Supporting Information

A gold microarray electrode on poly(methylmethacrylate) substrate to improve the performance of microbial fuel cell by modifying biofilm formation

Shan Chen¹, Xiangyu Chen^{1,2}, Shuangyue Hou¹, Penghui Xiong¹, Ying Xiong¹, Feng Zhang³,

Hanqing Yu³, Gang Liu¹, Yangchao Tian^{1*}

¹National Synchrotron Radiation Laboratory, University of Science and Technology of China,

Hefei, Anhui, 230029, People's Republic of China

²Department of Precision Machinery & Precision Instrumentation, University of Science and

Technology of China, Hefei, Anhui, 230029, People's Republic of China

³Department of Chemistry, University of Science & Technology of China, Hefei, Anhui,

230029, People's Republic of China

* **Corresponding author**:

Dr. Yangchao Tian

*Tel.: +86 551 63601844; * fax: +86 551 65141078.

*E-mail: ychtian@ustc.edu.cn.

The following is included as additional supporting materials for this paper:

Page S3 **Fig. S1.** Schematic diagram of two-chamber MFCs in this paper.

Page S4 **Fig. S2.** The extended Derjaguin−Landau−Verwey−Overbeek (DLVO) model curves of bacteria-PMMA and bacteria-GLASS interaction.

Page S5 The formulas used to theoretical analysis of bacteria-PMMA and bacteria-GLASS interaction.

Fig. S1. Schematic diagram of two-chamber MFCs in this paper.

Fig. S2. The extended Derjaguin−Landau−Verwey−Overbeek (DLVO) model curves of bacteria-PMMA and bacteria-GLASS interaction.

The formulas used to theoretical analysis of bacteria-PMMA and bacteria-GLASS interaction (referenced from [1](#page-4-0)).

The free energy of interactions ($\Delta G(d)$) is determined by Lifshitz–van der Waals ($\Delta G^{LW}(d)$), Lewis acid–base ($\Delta G^{AB}(d$)), and electrostatic ($\Delta G^{EL}(d$)) forces:

$$
\Delta G(d) = \Delta G^{LW}(d) + \Delta G^{AB}(d) + \Delta G^{EL}(d).
$$

where d indicates the distance between bacteria and a substrate and free energies are the functions of d. And with the surface energy data, $\Delta G^{LW}(d)$, $\Delta G^{AB}(d)$, and $\Delta G^{EL}(d)$ are calculated as follows:

$$
\Delta G^{LW}(d) = \frac{A}{6} \left[\frac{a}{d} + \frac{a}{d+2a} + \ln \left(\frac{d}{d+2a} \right) \right]
$$

$$
\Delta G^{AB}(d) = 2\pi a \lambda \Delta G_{d_0}^{AB} exp \frac{(d_0 - d)}{\lambda}
$$

$$
\Delta G^{EL}(d) = \pi \varepsilon_0 \varepsilon_r a \left(\zeta_B^2 + \zeta_S^2 \right) \left(\frac{2\zeta_B \zeta_S}{\zeta_B^2 + \zeta_S^2} \ln \frac{1 + \exp(-\kappa d)}{1 - \exp(-\kappa d)} + \ln \left[1 - \exp(-2\kappa d) \right] \right)
$$

 $\left| \right\rangle$ \mathbf{r}

where *a* is the bacterial radius;

A is the Hamaker constant;

 λ is the correlation length of molecules in a liquid medium;

 ε_0 is the permittivity of vacuum;

- ε_r is the relative permittivity;
- ζ_B is the zeta potential of bacteria;
- ζ_s is the zeta potential of substrate;
- κ is the reciprocal of Debye length.
- 1. X. Ge, Y. Leng, X. Lu, F. Z. Ren, K. F. Wang, Y. H. Ding and M. Yang, *J Biomed Mater Res A*, 2015, **103**, 384-396.