Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 ## Electronic Supplementary Information CNC-Al₂O₃-Ti: a new unit for micro scale strain sensing Chengwei Li, Lujun Pan*, Chenghao Deng and Peng Wang School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, PR China Corresponding e-mail: lpan@dlut.edu.cn ## 1. The stability of Ti film in air Figure S1 shows the Raman spectra of Ti and TiO₂ film deposited on the silicon substrate. Four main peaks are observed in the Raman spectra of TiO₂: one at approximately 520 cm⁻¹, is the characteristic peak of the Si. The other three are at approximately 142 cm⁻¹, 395 cm⁻¹ and 637 cm⁻¹, known as the peak of TiO₂. From the Raman spectra of the same Ti film deposited on a Si substrate as grown and a week after. It is found that there is no peak of TiO₂, only the peak of Si. This proves that Ti film is not easily oxidized in air. Figure S1. The Raman spectra of Ti and TiO₂ film on the silicon substrate