Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

1 Supporting Information

2	La ₂ O ₃ nanoparticl	es/ polya	acrylonit	trile nai	nofibe	rs for b	acterial
3	inactiv	ation bas	sed on p	hospha	te con	trol	
4	Jiaojie	He, Wei Wang*, Wenxin Shi, Fuyi Cui					
5	†State Key Laboratory o	of Urban Water Resource and Environment (SKLUWRE),					
6	School of Municipal and I	Enviromental Engineering, Harbin Institute of Technology,					
7	Harbin 150090, P.R. China						
8	Table S1 EDX patterns of the selected part in Fig. 1c for the elements.						
9	Table S2 Constant of Langmuir and Freundlich for phosphate adsorption under 25 °C.						
10	Table S3 The pseudo-first-order and pseudo-second-order model constants and						
11	correlation coefficient in the phosphate solution of different initial concentrations (20						
12	mg P/L, 50 mg P/L and 80 mg P/L).						
13	Figure S1. XRD spectra of LPNFs and La ₂ O ₃ nanoparticles.						
14	Figure S2. (a) Effect of initial pH of LPNFs on phosphate adsorption and the final pH						
15	drift of solution. (b) Effect of competitive coexisting anions on the phosphate						
16	adsorption capacity.						
17							
18	Table S1						
	Element Weigh	it	Atomi	<u>c %</u>			
	0 17.70		65.12				
	La 82.30		34.88				
19							
20	1 able 52		Lanomuir			Fraund	lich
	Samples	a. (mo	K ₁		 n	K _E	$\frac{R^2}{R^2}$
		P/g	(L/mg)		.1	r	

(La))

PAN/La_2O_3 Nanofibers 77.	.46 0.14	0.92 3.61	23.67 0.90	
------------------------------	----------	-----------	------------	--

Т	able S3						
Initial concentratio n C_0 (mg P/g)		Pseudo-first-order kinetics		Pseudo-second-order kinetics			
		k ₁ (1/min	q _e (cal) (mg	R ²	k_2 (g • mg ⁻¹ min ⁻	q _e (cal) (mg P/g	R ²
)	P/g(La))		1)	(La))	
_	80	0.019	64.06	0.98	0.0003	71.40	0.99
	50	0.012	54.21	0.97	0.0003	61.54	0.97
	20	0.018	41.48	0.93	0.0006	45.06	0.98

4 Figure S1.

7 Figure S2.

