Supporting information for the manuscript

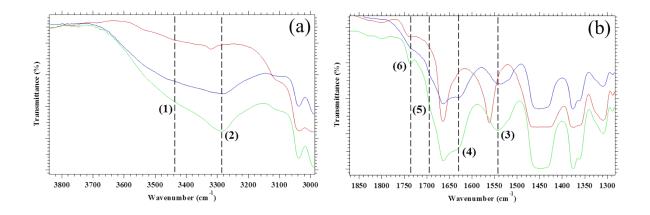
Strain-Induced Crystallization Behaviours of Natural Rubbers from Guayule and

Rubber Dandelion Revealed by Simultaneous Time-Resolved WAXD/Tensile

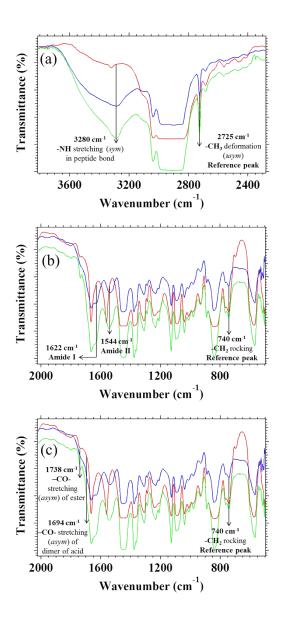
Measurements: Indispensable Function for Sustainable Resources

Yuko Ikeda^{a*}, Preeyanuch Junkong^b, Takumi Ohashi^b, Treethip Phakkeeree^b, Yuta Sakaki^b, Atitaya Tohsan^c, Shinzo Kohjiya^d and Katrina Cornish^e

^aFaculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan


^bGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan

^cDepartment of Materials and Production Technology Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Pracharat 1 Rd, Wongsawang, Bangsue, Bangkok 10800, Thailand


^dProfessor Emeritus of Kyoto University, 7-506, Onawaba-cho 6, Umezu, Ukyo-ku, Kyoto 615-0925, Japan

^eDepartments of Food, Agricultural and Biological Engineering, and Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, U. S. A.

*Corresponding author E-mail: yuko@kit.ac.jp.

Figure S1 FT-IR spectra of the purified guayule (—), rubber dandelion (—) and *Hevea* (—) natural rubbers after acetone purifications in the transmittance mode at r.t. in the range of (a) $3800 - 3000 \text{ cm}^{-1}$ and (b) $1850 - 1300 \text{ cm}^{-1}$. (1) 3450 cm^{-1} (O-H symmetrical stretching), (2) 3280 cm^{-1} (N-H symmetrical stretching of secondary amide), (3) 1544 cm^{-11} (N-H bending of mono-substituted amide II), (4) 1622 cm^{-1} (N-H bending of mono-substituted amide I), (5) 1694 cm^{-1} (C=O asymmetrical stretching of dimer of acid and (6) 1738 cm^{-1} (C=O asymmetrical stretching of ester).

Figure S2 FT-IR spectra of the purified guayule (—), rubber dandelion (—) and *Hevea* (—) natural rubbers in the transmittance mode for semi-quantitative analyses under the base line (a) ca.3700 - ca.2360 cm⁻¹ for calculating the relative intensities of N-H stretching in peptide bond using a peak at 2725 cm⁻¹ (CH₃ asymmetrical deformation) as a reference, (b) ca.1920 - ca.705 cm⁻¹ for calculating the relative intensities of N-H bending in amide I, amide II using a peak at 740 cm⁻¹ (CH₂ rocking) as a reference and (c) ca.1920 - ca.705 cm⁻¹ for calculating the relative intensities of X-H bending in amide I, amide II using a peak at 740 cm⁻¹ (CH₂ rocking) as a reference and (c) ca.1920 - ca.705 cm⁻¹ for calculating the relative intensities of X-H bending peak at 740 cm⁻¹ (CH₂ rocking) as a reference and (c) ca.1920 - ca.705 cm⁻¹ for calculating the relative intensities of X-H bending peak at 740 cm⁻¹ (CH₂ rocking) as a reference.