Supporting information

Exploring the role of V2O⁵ in the reactivity of NH4HSO⁴ with NO on V2O5/TiO² SCR catalysts

Ruiyang Qu,^{a†} Dong Ye,^{a†} Chenghang Zheng,^a Xiang Gao,^{a*} Zhongyang Luo,^a Mingjiang Ni,^a Kefa Cen^a

† These authors contributed equally to this work and should be considered as co-first authors.

State Key Laboratory of Clean Energy Utilization, Department of Energy Engineering, Zhejiang University, Hangzhou,

310027 ,China

Corresponding author. Tel.: +86 571 87951335;

E-mail address: xgao1@zju.edu.cn (X. Gao)

Figure captions

Fig. S1. XRD patterns of the series V/Ti catalysts

Fig. S2. FTIR spectra of the series V/Ti catalysts

Fig. S1. XRD patterns of the series V/Ti catalysts

The XRD patterns of the series catalysts are presented in Fig. S1. All the diffraction peaks of the samples with V content lower than 8 *wt*% could be indexed to anatase TiO₂ and rutile TiO₂ phases. The absence of V₂O₅ and NH₄HSO₄ crystallites suggests that vanadium and sulfate species are highly dispersed, which exist in an amorphous state on the TiO₂ surface. Given increases in V_2O_5 content to 8 *wt*%, new diffraction peaks indexed to V_2O_5 phase appear, indicating that V loading is beyond the theoretical monolayer coverage on the $TiO₂$ support.¹

Fig. S2. FTIR spectra of the series V/Ti catalysts

In the case of the NH₄HSO₄-deposited samples, the characteristic peaks attributed to bidentate SO_4^2 at 1214, 1128, 1050 cm⁻¹ are generated, which are assigned to the v₃ vibrations of bidentate SO_4^2 in C_{2v} symmetry (Fig. S2). The bands at 1214 and 1128 cm⁻¹ appear because of asymmetric and symmetric stretching of the S=O vibrations.^{2, 3} In the meantime, the peak at 1050 cm⁻¹ is related to the asymmetric S-O stretching vibrations. Given an increase in V_2O_5 content, new bands centered at 1088 and 1025 cm⁻¹, which could be related to the stretching of the S-O vibrations in pure NH₄HSO₄, appear.^{4, 5} The presence of vanadium species leads to a deficit in TiO₂ surface basic sites, thereby allowing the appearance of pure $NH₄HSO₄$ phase. Combined with the XRD patterns in Fig. S1, $NH₄HSO₄$ might exist in the amorphous state.

Fig. S3. *In situ* DRIFTS study of the NH4HSO⁴ decomposition behavior over the V4/Ti catalyst surface

In situ DRIFTS was conducted to investigate the detailed NH₄HSO₄ decomposition behavior on the catalyst surface. As is shown in Fig. S3, characteristic IR peaks centered at 1242 and 1433 cm⁻¹ attributed to bidentate SO_4^2 and NH_4 ⁺ appear when the temperature is 100 °C.^{6, 7} In the meantime, the bands at 2834, 3050, 3262 cm⁻¹, assigned to the stretching vibrations of N-H in NH₄⁺ also come out.⁸ With increasing temperature, the peak related to bidentate $SO₄$ ² undergoes a blue shift, together with the occurrence of a decrease in the intensity of the bands attributed to sulfate and ammonium species. In addition, characteristic IR peak centered at 1378 cm⁻¹ attributed to tridentate SO_4^2 comes out at a temperature of 450 °C, which might be due to the transformation of sulfate species from $(M_2SO_4)H$ structure to (M- O ₃=O one.⁹

Tables

Table S1

 N_2 adsorption results of the series V/Ti catalysts

Samples	$BET(m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$
ABS-Ti	30	0.22
$ABS-V1/Ti$	30	0.23
$ABS-V2/Ti$	28	0.23
$ABS-V4/Ti$	24	0.22
ABS-V8/Ti	28	0.19

Reference

- G. Busca, L. Lietti, G. Ramis and F. Berti, *Appl. Catal., B*, 1998, **18**, 1-36.
- X. Guo, C. Bartholomew, W. Hecker and L. L. Baxter, *Appl. Catal., B*, 2009, **92**, 30-40.
- J. L. Ropero-Vega, A. Aldana-Pérez, R. Gómez and M. E. Niño-Gómez, *Appl. Catal. A*, 2010, **379**, 24-29.
- A. Goypiron, J. De Villepin and A. Novak, *J. Raman Spectrosc.,* 1980, **9**, 297-303.
- M. Mamlouk, P. Ocon and K. Scott, *J. Power Sources,* 2014, **245**, 915-926.
- B. Jiang, Z. Wu, Y. Liu, S.C. Lee and W.K. Ho, *J. Phys. Chem. C* 2010, **114**, 4961-4965.
- R. Jin, Y. Liu, Z. Wu, H. Wang and T. Gu, *Catal. Today,* 2010, **153**, 84-89.
- F. Liu, K. Asakura, H. He, W. Shan, X. Shi and C. Zhang, *Appl. Catal., B*, 2011, **103**, 369-377.
- L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang and L. Dong, *Appl. Catal., B*, 2015, **165**, 589-598.