Supporting information

Exploring the role of V_2O_5 in the reactivity of NH_4HSO_4 with NO on V_2O_5/TiO_2 SCR catalysts

Ruiyang Qu,^{a+} Dong Ye,^{a+} Chenghang Zheng,^a Xiang Gao,^{a*} Zhongyang Luo,^a Mingjiang Ni,^a Kefa Cen^a

⁺ These authors contributed equally to this work and should be considered as co-first authors.

State Key Laboratory of Clean Energy Utilization, Department of Energy Engineering, Zhejiang University, Hangzhou,

China, 310027

Corresponding author. Tel.: +86 571 87951335;

E-mail

address:

xgao1@zju.edu.cn

(X.

Gao)

Figure captions

Fig. S1. XRD patterns of the series V/Ti catalysts

Fig. S2. FTIR spectra of the series V/Ti catalysts

Fig.	S3.	In	situ	DRIFTS	study	of	the	NH₄HSO₄	decomposition	behavior	over	the	V4/Ti	catalyst	surface
------	-----	----	------	--------	-------	----	-----	---------	---------------	----------	------	-----	-------	----------	---------

Fig. S1. XRD patterns of the series V/Ti catalysts

The XRD patterns of the series catalysts are presented in Fig. S1. All the diffraction peaks of the samples with V content lower than 8 *wt*% could be indexed to anatase TiO₂ and rutile TiO₂ phases. The absence of V_2O_5 and NH₄HSO₄ crystallites suggests that vanadium and sulfate species are highly dispersed, which exist in an amorphous state on the TiO₂ surface. Given increases in V_2O_5 content to 8 *wt*%, new diffraction peaks indexed to V_2O_5 phase appear, indicating that V loading is beyond the theoretical monolayer coverage on the TiO₂ support.¹

Fig. S2. FTIR spectra of the series V/Ti catalysts

In the case of the NH₄HSO₄-deposited samples, the characteristic peaks attributed to bidentate SO₄²⁻ at 1214, 1128, 1050 cm⁻¹ are generated, which are assigned to the v₃ vibrations of bidentate SO₄²⁻ in C_{2v} symmetry (Fig. S2). The bands at 1214 and 1128 cm⁻¹ appear because of asymmetric and symmetric stretching of the S=O vibrations.^{2, 3} In the meantime, the peak at 1050 cm⁻¹ is related to the asymmetric S-O stretching vibrations. Given an increase in V₂O₅ content, new bands centered at 1088 and 1025 cm⁻¹, which could be related to the stretching of the S-O vibrations in pure NH₄HSO₄, appear.^{4, 5} The presence of vanadium species leads to a deficit in TiO₂ surface basic sites, thereby allowing the appearance of pure NH₄HSO₄ phase. Combined with the XRD patterns in Fig. S1, NH₄HSO₄ might exist in the amorphous state.

Fig. S3. In situ DRIFTS study of the NH₄HSO₄ decomposition behavior over the V4/Ti catalyst surface

In situ DRIFTS was conducted to investigate the detailed NH_4HSO_4 decomposition behavior on the catalyst surface. As is shown in Fig. S3, characteristic IR peaks centered at 1242 and 1433 cm⁻¹ attributed to bidentate SO_4^{2-} and NH_4^+ appear when the temperature is 100 °C.^{6, 7} In the meantime, the bands at 2834, 3050, 3262 cm⁻¹, assigned to the stretching vibrations of N-H in NH_4^+ also come out.⁸ With increasing temperature, the peak related to bidentate SO_4^{2-} undergoes a blue shift, together with the occurrence of a decrease in the intensity of the bands attributed to sulfate and ammonium species. In addition, characteristic IR peak centered at 1378 cm⁻¹ attributed to tridentate SO_4^{2-} comes out at a temperature of 450 °C, which might be due to the transformation of sulfate species from (M₂SO₄)H structure to (M- $O)_3=O$ one.⁹

Tables

Table S1

 N_2 adsorption results of the series V/Ti catalysts

Samples	BET (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
ABS-Ti	30	0.22
ABS-V1/Ti	30	0.23
ABS-V2/Ti	28	0.23
ABS-V4/Ti	24	0.22
ABS-V8/Ti	28	0.19

Reference

- 1 G. Busca, L. Lietti, G. Ramis and F. Berti, *Appl. Catal.*, *B*, 1998, **18**, 1-36.
- 2 X. Guo, C. Bartholomew, W. Hecker and L. L. Baxter, *Appl. Catal.*, *B*, 2009, **92**, 30-40.
- J. L. Ropero-Vega, A. Aldana-Pérez, R. Gómez and M. E. Niño-Gómez, Appl. Catal. A, 2010, 379, 24-29.
- 4 A. Goypiron, J. De Villepin and A. Novak, J. Raman Spectrosc., 1980, 9, 297-303.
- 5 M. Mamlouk, P. Ocon and K. Scott, J. Power Sources, 2014, 245, 915-926.
- 6 B. Jiang, Z. Wu, Y. Liu, S.C. Lee and W.K. Ho, J. Phys. Chem. C 2010, 114, 4961-4965.
- 7 R. Jin, Y. Liu, Z. Wu, H. Wang and T. Gu, Catal. Today, 2010, 153, 84-89.
- 8 F. Liu, K. Asakura, H. He, W. Shan, X. Shi and C. Zhang, *Appl. Catal.*, *B*, 2011, **103**, 369-377.
- 9 L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang and L. Dong, *Appl. Catal.*, *B*, 2015, 165, 589-598.