Supporting Information

Simple synthesis of MoO₂/Carbon aerogels anodes for high performance lithium ion batteries from seaweed biomass

Ying Che,^a Xiaoyi Zhu,^{*ab} Jianjiang Li,^{ac} Jin Sun,^a Yanyan Liu,^a Chunde Jin,^d and Zhaohong Dong^{*a}

^a College of Textile & Clothing, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P R China. E-mail: xyzhu@qdu.edu.cn; dongzhh11@163.com

^b College of Automation and Electrical Engineering. Qingdao University, Qingdao 266071, P R China.

^c Collaborative Innovation Centre for Marine Biomass Fibres, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, P R China.

^d School of Engineering, Zhejiang A & F University, Lin'an 311300, P R China.

Fig. S1 XRD patterns of AMM aerogels stabilized at 350, 375 and 400 °C in air for 1 h.

Fig. S2 XRD patterns of MoO₂@SAC-X aerogels and MoO₂@SAC aerogels which were synthesized by annealing the AMM aerogels at 600 $^{\circ}$ C under N₂ without a stabilization process.

Fig. S3 TG curve of SAC aerogels synthesized by pyrolysis of alginic acid aerogels at 600 $^{\circ}$ C under N₂ without a stabilization process.

Fig. S4 SEM images of (a, b) MoO₂@SAC-350 and (c, d) MoO₂@SAC-400. (b) and (d) Images showing a magnified view of the area enclosed by the red box in (a) and (c).

Fig. S5 Cycling performance of $MoO_2@SAC$ electrode at current density of 200 mA g⁻¹.

Fig. S6 Cycling performance of (a) SAC aerogels and (b) commercial MoO_2 at current density of 200 mA g⁻¹.

Fig. S7 Nitrogen adsorption-desorption isotherms and the pore diameter distribution of (a) SAC aerogels, (b) MoO₂@SAC-350, (c) MoO₂@SAC-375 and (d) MoO₂@SAC-400.

Table. S1 BET, pore volume and average pore width of SAC aerogels, MoO₂@SAC-350,

Samples	BET Surface Area	Adsorption volume of	Adsorption average	
	/m² g-1	pores /cm ³ g ⁻¹	pore width /nm	
SAC aerogels	360.03	0.42	18.90	
MoO ₂ @SAC-350	210.14	0.12	5.21	
MoO ₂ @SAC-375	196.73	0.10	4.06	
MoO ₂ @SAC-400	25.22	0.09	3.59	

Table. S2 Comparison of electrochemical performance of MoO₂/carbon composites electrodes prepared by different methods.

				Initial	Reversible	
Ref	Materials	Synthesis method	Cycle	coulombic	capacities	Rates
			numbers	efficiency(%)	(mA h g ⁻¹)	(mA g ⁻¹)
	MoO ₂ /Carbon aerogels	Present study	120	72	490	200
9	MoO ₂ /carbon	Hydrothermal and	50	52.2	629	200
	nanocomposites	annealing				
11	MoO_2 ordered					
	mesoporous carbon	Solvothermal	50	63.9	1049.1	100
	hybrids					
30	Carbon-coated MoO ₂	Electrospinning	50		430.6	200
	nanofibers	and annealing				
32	MoO ₂ /ordered	Thermal reduction				
	mesoporous carbon		50	61.4	689	50
	nanocomposites					
S1	MoO ₂ /graphene	Solution and	50	75	640	200
	composites	annealing				
S2	MoO ₂ /graphene thin film	Layer-by-layer	100	71.5	675.9	47.8
		self-assembly				
S 3	MoO ₂ /graphene					
	hierarchical	In-situ reduction	50	75.4	997.1	167.6
	nanoarchitectures					

S4	Carbon coated MoO_2	Hydrothermal and	30	60	617.2	100
	nanobelts	annealing				
S5	Ultrafine MoO ₂	Impregnation and				
	nanoparticles/carbon	annealing	50	62.5	409	800
	composites					
S6	MWCNTs@MoO ₂ -C	Electrospinning	30		832.2	50
	nanocable composites	and annealing			425	200

Notes and references

- 1. K. Seng, G. Du, L. Li, Z. Chen, H. Liu and Z. Guo, J. Mater. Chem., 2012, **22**, 16072-16077.
- 2. F. Xia, X. Hu, Y. Sun, W. Luo and Y. Huang, *Nanoscale*, 2012, **4**, 4707-4711.
- 3. Y. Chen, X. Di, C. Ma, C. Zhu, P. Gao, J. Li, C. Sun and Q. Ouyang, *Rsc Adv.*, 2013, **3**, 17659-17663.
- 4. Q. Tang, Z. Shan, L. Wang and X. Qin, *Electrochim. Acta*, 2012, **79**, 148-153.
- 5. Y. Sun, X. Hu, W. Luo and Y. Huang, J. Mater. Chem., 2011, **22**, 425-431.
- 6. J. Guan, L. Zhao, C. Xing and Y. Li, *Mater. Res. Express*, 2015, **2**.