Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Modeling the reactivity of ozone and sulphate radicals towards organic chemicals in

water using machine learning approaches

Shikha Gupta^{1a}, Nikita Basant^{*2}

¹CSIR-Indian Institute of Toxicology Research,

Post Box 80, Mahatma Gandhi Marg, Lucknow-226 001, India

²ETRC, Gomtinagar, Lucknow-226010, India

(aCurrent address: CSIR-NBRI, Lucknow)

*Author for all correspondance : <u>nikita_basant@yahoo.com</u>

Table S1a: List of references for ozone data

S.No.	Ozone data Reference
1	J.L. Acero, F. Javier Benitez, F.J. Real, and C. Maya, Ind. Eng. Chem. Res., 2003, 42, 5762-
	5769.
2	F.J. Benitez, J. Beltran-Heredia, and T. Gonzalez, Ozone Sci. Eng., 1994, 16, 213-234.
3	J. Benner, E. Salhi, T. Ternes, and U. von Gunten, Water Res. 2008, 42, 3003-3012.
4	V. Butkovic, L. Klasinc, M. Orhanovic, J. Turk, and H. Gusten, Environ. Sci. Technol., 1983,
	17, 546–548.
5	P. Cheme-Ayala, M.G. El-Din, and D.W. Smith, Chemosphere, 2010, 78, 557-562.
6	M. Deborde, S. Rabouan, J.P. Duguet, and B. Legube, Environ. Sci. Technol., 2005, 39, 6086-
	6092.
7	M.C. Dodd, M.O. Buffle, and U. von Gunten, Environ. Sci. Technol., 2006, 40, 1969–1977.
8	M.M. Huber, S. Canonica, G.Y. Park, and U. von Gunten, Environ. Sci. Technol., 2003, 37,
	1016–1024.
9	X. Jin, S. Peldszus, and P.M. Huck, Water Res., 2012, 46, 6519-6530.
10	C.C.D. Yao, and W.R. Haag, Water Res., 1991, 25,761-773.
11	J. Hoigne, and H. Bader, Water Res., 1983, 17, 185-194.
12	J. Hoigne, and H. Bader, Water Res., 1983, 17, 173-183.
13	J. Hoigne, H. Bader, W. Haag, and J. Staehelin, Water Res., 1985, 19, 993-1004.
14	A. Peter, and U. Von Gunten, Environ. Sci. Technol., 2007, 41, 626-631.

Table S1b: List of references for sulphate radical data

S.No.	Sulphate data reference			
1	X. He, S.P. Mezyk, I. Michael, D, Fatta-Kassinos, and D.D. Dionysiou, J. Hazard. Mater.,			
	2014, 279 , 375–383.			
2	I. Grgic, B. Podkrajsek, P. Barzaghi, and H. Herrmann, Atmos. Environ., 2007, 41, 9187-9194.			
3	S. Padmaja, Z.B. Alfassi, P. Neta, and R.E. Huie, Int. J. Chem. Kinet., 1993, 25, 193-198.			
4	A.B. Ross, and P. Neta, Rate constants for reactions of inorganic radicals in aqueous solution.			
	In Commerce, Ed; National Bureau of Standards: Washington, DC, U.S., 1979.			
5	M. Bonifacic, and K.D. Asmus, J. Phys. Chem., 1976, 80, 2426-2430.			
6	C.L. Clifton, and R.E. Huie, Int. J. Chem. Kinet., 1989, 21, 677-687.			
7	L. Dogliotti, and E. Hayon, J. Phys. Chem. 1967, 71, 2511-2516.			
8	C. George, H. El Rassy, and J.M. Chovelon, Int. J. Chem. Kinet., 2001, 33, 539-547.			
9	H. Herrmann, H.W. Jacobi, G. Raabe, A. Reese, and R. Zellner, Anal. Bioanal. Chem., 1996,			
	355 , 343–344.			
10	R.E. Huie, C.L. Clifton, and S.A. Kafafi, J. Phys. Chem., 1991, 95, 9336-9340.			
11	I. Kraljić, Int. J. Radiat. Phys. Chem., 1970, 2, 59-68.			
12	P. Maruthamuthu, and P. Neta, J. Phys. Chem., 1977, 81, 1622-1625.			
13	P.G. Tratnyek, T.J. Grundl, and S.B. Haderlein, Aquatic Redox Chemistry; American			
	Chemical Society: Washington, DC, 2011.			
14	P. Neta, R.E. Huie, and A.B. Ross, J. Phys. Chem. Ref. Data, 1990, 19, 413-513.			
15	P. O'Neill, S. Steenken, and D. Schulte-Frohlinde, J. Phys. Chem., 1975, 79, 2773-2779.			
16	J. Paul, D.B. Naik, Y.K. Bhardwaj, and L. Varshney, Radiat. Phys. Chem., 2014, 100, 38-44.			
17	J.L. Redpath, and R.L. Willson, Int. J. Radiat. Biol., 1975, 27, 389-398.			
18	S. Steenken, P. O'Neill, and D. Schulte-Frohlinde, J. Phys. Chem., 1977, 81, 26-30.			
19	M.M. Ahmed, S. Barbati, P. Doumenq, and S. Chiron, Chem. Eng. J. 2012, 197, 440-447.			

S.No.	Compound	logk	Dependent
		(experimental)	variable
1	Equilenin	7.000	log k _{O3}
2	Butylated hydroxyanisole	6.520	log k _{O3}
3	Fenoterol	6.450	log k _{O3}
4	Tetracycline	6.400	log k _{O3}
5	Triclosan	6.400	log k _{O3}
6	Phenol	6.260	log k _{O3}
7	17α-Ethinylestradiol	6.260	log k _{O3}
8	Gemfibrozil	5.690	log k _{O3}
9	Methicillin	4.590	log k _{O3}
10	Benzo[a]pyrene	3.880	log k _{O3}
11	Clofibric acid	3.700	log k _{O3}
12	Trifluralin	3.280	log k _{O3}
13	Methoxychlor	2.400	log k _{O3}
14	Tri(2-butoxyethyl)phosphate	0.660	log k _{O3}
15	Butylbenzyl phthalate	0.150	log k _{O3}
16	Metformin	0.080	log k _{O3}
17	Tris(chloroethyl)phosphate	-0.100	log k _{O3}
18	Iomeprol	-0.700	log k _{O3}
19	Dicamba	-1.000	log k _{O3}
20	Dicofol	-1.000	log k _{O3}
21	Di(2-ethylhexyl)phthalate	-1.000	log k _{O3}
22	Hexachlorobenzene	-2.000	log k _{O3}
23	Bisphenol A	6.430	log k _{O3}
24	Sulfamethoxazole	6.300	log k _{O3}
25	Estrone	6.260	log k _{O3}
26	17 beta-Estradiol	6.230	log k _{O3}
27	Estriol	6.220	log k _{O3}
28	Amoxicillin	6.180	log k _{O3}
29	4-Nonylphenol	6.150	log k _{O3}
30	Lincomycin	5.830	log k _{O3}
31	Carbamazepine	5.480	log k _{O3}
32	Trimethoprim	5.430	log k _{O3}
33	Naproxen	5.410	log k _{O3}
34	Enrofloxacin	5.180	log k _{O3}
35	Pyrene	4.560	log k _{O3}
36	Ciprofloxacin	4.280	log k _{O3}
37	Phenantlene	4.200	log k _{O3}
38	Penicillin G	3.680	log k _{O3}
39	Metoprolol	3.226	log k _{O3}

 Table S2: Data set used in QSRR modeling

40	Bromoxynil	3.060	log k _{O3}
41	Bezafibrate	2.770	log k _{O3}
42	Ibuprofen	0.980	log k _{O3}
43	Alachlor	0.580	log k _{O3}
44	Diazepam	-0.120	log k _{O3}
45	Dimethyl phthalate	-0.700	log k _{O3}
46	Diethylphthalate	-0.850	log k _{O3}
47	Gamma-HCH	-1.400	log k _{O3}
48	2,4-D	0.360	log k _{O3}
49	Atrazine	0.780	log k _{O3}
50	Simazine	0.680	log k _{O3}
51	Acetochlor	0.380	log k _{O3}
52	Cyanazine	0.870	log k _{O3}
53	Iopromide	-0.100	log k _{O3}
54	Metolachlor	0.040	log k _{O3}
55	Propachlor	-0.050	log k _{O3}
56	Dalapon	-3.301	log k _{O3}
57	Propionic acid	-2.699	log k _{O3}
58	Adipic acid monoethyl ester	-2.523	log k _{O3}
59	Succinic acid	-2.523	log k _{O3}
60	Tert-butanol	-2.523	log k _{O3}
61	Methanol	-1.620	log k _{O3}
62	Cyanic acid	-2.000	$\log k_{O3}$
63	Glyoxylic acid	0.279	log k _{O3}
64	Propan-2-ol	0.279	log k _{O3}
65	Endothall	0.301	log k _{O3}
66	Pyridine	0.477	$\log k_{O3}$
67	Octanal	0.903	log k _{O3}
68	Fenoprop	0.949	log k _{O3}
69	Nitrosodimethylamine	1.000	log k _{O3}
70	2-isopropyl-3-methoxypyrazine	1.701	$\log k_{O3}$
71	Picloram	2.000	$\log k_{O3}$
72	Methylamine	2.447	$\log k_{O3}$
73	Beta-alanine	2.491	$\log k_{O3}$
74	1-phenoxy-2-propanol	2.505	$\log k_{O3}$
75	Oxamyl	2.792	$\log k_{O3}$
76	Alpha-alanine	2.806	$\log k_{O3}$
77	Atenolol	3.230	$\log k_{O3}$
78	Beta-cyclocitral	3.590	$\log k_{O3}$
79	Dimethylamine	3.903	$\log k_{O3}$
80	Trimethylamine	5.097	$\log k_{O3}$
81	Propanolol	5.000	$\log k_{O3}$
82	1,1-dimethylguanidine	8.663	log k _{SO4}

83	1,3,5-trimethoxy-benzene	9.255	log k _{SO4}
84	1,3-dimethoxy-benzene	9.845	log k _{SO4}
85	1,4-dimethoxy-benzene	9.857	log k _{SO4}
86	1,4-dioxane	7.612	log k _{SO4}
87	1-heptanol	8.398	log k _{SO4}
88	1-hexanol	8.204	log k _{SO4}
89	1-octanol	8.505	log k _{SO4}
90	1-pentanol	8.114	log k _{SO4}
91	1-propanol	7.728	log k _{SO4}
92	2,3,4-trimethoxy-benzoate	9.398	log k _{SO4}
93	2,3-dimethyl-2,3-butanediol	8.415	log k _{SO4}
94	2,4,6-trimethoxy-benzoate	9.415	log k _{SO4}
95	2-methoxybenzoate	9.845	log k _{SO4}
96	2-propanol	7.922	log k _{SO4}
97	3,5-dimethoxy-benzoate	9.643	log k _{SO4}
98	3-methoxybenzoate	9.881	log k _{SO4}
99	acetanilide	9.556	log k _{SO4}
100	acetate	6.672	log k _{SO4}
101	amoxicillin	9.462	log k _{SO4}
102	ampicillin	9.301	$\log k_{SO4}$
103	anisole	9.690	log k _{SO4}
104	benzene	8.826	log k _{SO4}
105	benzoic acid	9.079	log k _{SO4}
106	carboxyformate	6.230	log k _{SO4}
107	cephalothin	9.542	log k _{SO4}
108	cyclopentanol	8.447	log k _{SO4}
109	diclofenac	9.964	log k _{SO4}
110	dimethyl disulfide	8.580	log k _{SO4}
111	dipropyl ether	8.342	log k _{SO4}
112	estradiol	9.083	log k _{SO4}
113	ethanol	7.720	log k _{SO4}
114	ethinylestradiol	9.479	log k _{SO4}
115	formic acid	5.699	log k _{SO4}
116	fumarate	7.204	log k _{SO4}
117	glycine	6.954	log k _{SO4}
118	glycolate	7.204	log k _{SO4}
119	ibuprofen	9.580	log k _{SO4}
120	isoborneol	8.723	log k _{SO4}
121	lactate	7.204	$\log k_{SO4}$
122	lactic acid	7.000	$\log k_{SO4}$
123	malate	7.176	$\log k_{SO4}$
124	malic acid	6.886	$\log k_{SO4}$
125	malonic acid	6.431	log k _{SO4}

126	mesitylene	9.114	log k _{SO4}
127	methanol	7.021	log k _{SO4}
128	methionine	9.041	log k _{SO4}
129	m-toluic acid	9.301	log k _{SO4}
130	o-bromobenzoic acid	8.940	log k _{SO4}
131	oxetane	8.053	log k _{SO4}
132	p-bromobenzoic acid	9.000	log k _{SO4}
133	p-chlorobenzoic acid	8.556	log k _{SO4}
134	p-cresol	9.447	log k _{SO4}
135	penicillinV	9.378	log k _{SO4}
136	p-hydroxybenzoic acid	9.398	log k _{SO4}
137	piperacillin	9.079	log k _{SO4}
138	p-methoxybenzoic acid	9.544	$\log k_{SO4}$
139	progesterone	9.076	log k _{SO4}
140	p-toluic acid	9.255	log k _{SO4}
141	serine	7.362	log k _{SO4}
142	succinic acid	6.851	log k _{SO4}
143	terephthalic acid	8.230	log k _{SO4}
144	tetrahydrofuran	8.369	log k _{SO4}
145	tetrahydropyran	8.057	log k _{SO4}
146	tyrosine	9.505	log k _{SO4}
147	1,2,4-trimethoxy-benzene	9.892	log k _{SO4}
148	1,2-dimethoxy-benzene	9.699	log k _{SO4}
149	1,3-dioxane	7.535	log k _{SO4}
150	1-butanol	7.903	log k _{SO4}
151	2,6-dimethoxy-benzoate	9.398	log k _{SO4}
152	3-pentanol	8.204	log k _{SO4}
153	diethyl ether	8.114	log k _{SO4}
154	formaldehyde	7.041	log k _{SO4}
155	glycolic acid	6.623	log k _{SO4}
156	histidine	9.398	log k _{SO4}
157	hydrogen malate	6.929	log k _{SO4}
158	o-toluic acid	9.146	log k _{SO4}
159	oxalic acid	6.041	log k _{SO4}
160	oxepane	8.342	log k _{SO4}
161	penicillinG	9.146	log k _{SO4}
162	p-nitrosodimethylaniline	9.362	log k _{SO4}
163	p-xylene	9.431	$\log k_{SO4}$
164	ticarcillin	8.903	$\log k_{SO4}$
165	toluene	9.114	$\log k_{SO4}$
166	tryptophan	9.362	log k _{SO4}

Descriptors	AMR	nX	minHBa	MDEC-24
AMR	1.00			
nX	0.20	1.00		
minHBa	-0.29	-0.37	1.00	
MDEC-24	0.30	0.07	0.31	1.00

Table S3a: Correlation matrix of selected descriptors in $logk_{O3}$ data set

Table S3b: Correlation matrix of selected descriptors in $logk_{SO4}$ data set

Descriptors	AMR	SssO	meanI
AMR	1.00		
SssO	0.10	1.00	
meanI	-0.37	-0.27	1.00

Figure S1a: Histogram of $logk_{O3}$ values

Figure S1b: Histogram of logk_{SO4} values

Figure S2a: Plot showing the distribution of experimental and residual values of logk_{O3} in training and test sets by SDT-QSRR model

Figure S2b: Plot showing the distribution of experimental and residual values of logk_{O3} in training and test sets by DTB-QSRR model

Figure S3a: Plot showing the distribution of experimental and residual values of logk_{S04} in training and test sets by SDT-QSRR model

Figure S3b: Plot showing the distribution of experimental and residual values of logk_{S04} in training and test sets by DTB-QSRR model