Supporting Information

Reduction mechanism of iron titanium based oxygen carriers with H_2 for

chemical looping applications- A combined experimental and theoretical study

Yu-Cheng Liu,^{a,†} Santhanamoorthi Nachimuthu,^{b,†} Yu-Cheng Chuang,^b Young Ku^{a,*} a nd Jyh-Chiang Jiang^{b,*}

^a Environmental Engineering Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, E-Mail: ku508@mail.ntust.edu.tw

^b Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan,

E-Mail: jcjiang@mail.ntust.edu.tw

[†] These authors contributed equally to this work

Heating rate (°C/min)	Reaction Temperature (°C)	Holding time (hr)	Results
5	600	2	TiO_2 , Fe_2O_3
5	700	2	TiO ₂ , Fe ₂ O ₃
5	800	2	TiO ₂ , Fe ₂ O ₃
5	900	2	TiO ₂ , Fe ₂ O ₃ , Fe ₂ TiO ₅
5	1000	2	TiO ₂ , Fe ₂ O ₃ , Fe ₂ TiO ₅
5	1025	2	TiO ₂ , Fe ₂ O ₃ , Fe ₂ TiO ₅
5	1050	2	TiO ₂ , Fe ₂ O ₃ , Fe ₂ TiO ₅
5	1075	2	Fe ₂ TiO ₅

Table S1. Typical reaction conditions and results in case of Fe_2TiO_5 .

Heating rate (°C/min)	Reaction Temperature (°C)	Holding time (hr)	Results
5	900	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1000	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1100	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1200	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1300	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1300	5	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1325	2	FeO, FeTiO ₃ , Fe ₂ TiO ₄
5	1325	5	Fe ₂ TiO ₄

Table S2. Typical reaction conditions and results in case of Fe_2TiO_4 .

Heating rate (°C/min)	Reaction Temperature (°C)	Holding time (hr)	Results
5	400	2	TiO ₂ , FeO
5	500	2	TiO ₂ , FeO, FeTiO ₃
5	600	2	TiO ₂ , FeO, FeTiO ₃
5	625	2	TiO ₂ , FeO, FeTiO ₃
5	625	5	TiO ₂ , FeO, FeTiO ₃
5	650	2	TiO ₂ , FeO, FeTiO ₃
5	650	5	FeTiO ₃

Table S3. Typical reaction conditions and results in case of FeTiO₃.

System	a (Å)	b (Å)	c (Å)
Fe ₂ TiO ₅			
Expt. ¹	3.739	9.779	9.978
Calculated	3.750	9.850	10.04
Fe ₂ TiO ₄ ^a			
Expt. ²	8.534		
Calculated	8.496		
FeTiO ₃ ^b			
Expt. ³	5.088		14.092
Calculated	5.075		14.036
a: lattice constant $a = b = c$			

Table S4. Experimental and Calculated lattice parameters for the bulk structure of three iron titanium oxides.

^{b:} lattice constant $a = b \neq c$

Structure	Temperature (°C)	<i>k</i> _{obs}	n
	800	8.36 2 10-3	
	850	1.09\\$10^2	
Fe ₂ TiO ₅	900	1.32 3 10-2	0.71
	950	1.59 3 10-2	
Fe ₂ TiO ₄	1000	1.84 3 10-2	
	800	6.16 3 10-4	
	850	1.06 3 10-3	
Fe ₂ TiO ₄	900	1.58 3 10-3	0.54
	950	2.19 3 10-3	
	800 8.36 850 1.09 900 1.32 950 1.59 1000 1.84 800 6.16 850 1.06 950 2.19 950 2.19 950 2.19 950 2.19 950 2.19 950 2.19 950 2.19 950 2.19 950 1.58 950 1.58 950 1.58 950 1.58 950 1.35 900 1.03 950 1.35 950 1.35 1000 2.04	2.66 2 10-3	
	800	3.03 3 10-5	
	850	5.22 3 10 ⁻⁵	
FeTiO ₃	900	1.03\vec{10-4}{0.000}	0.27
	950	1.35 3 10-4	
	1000	2.04 3 10-4	

Table S5. The observed rate constants (k_{obs}) and the reaction orders (n) for the reduction of three iron titanium oxides (Fe₂TiO₅, Fe₂TiO₄, and FeTiO₃) with H₂ molecule at various reaction temperatures.

System	tem Surface				H ₂ O		
	Н-Н	Fe-H	H-O	Fe-O	H-O ₁	H-O ₂	IMF
Fe ₂ TiO ₅							-
IS	0.797	0.173	2.121	1.885			
TS1	0.930	1.635	1.382	2.081			<i>i</i> 831
IM	1.991	1.490	0.977	2.114			
TS2	2.172	1.489	0.967	2.853			<i>i</i> 1157
FS					0.982	0.982	
Fe ₂ TiO ₄							
IS	0.823	1.771	2.611	1.950			
TS1	1.004	1.695	1.335	2.137			i895
IM	2.471	1.500	0.976	1.955			
TS2	1.182	1.775	1.428	2.783			<i>i</i> 1382
FS					0.979	0.985	
FeTiO ₃ ^b							
IS	0.754	2.696	2.921	2.046			
TS1	1.309	1.663	1.045	2.611			i768
IM	2.864	1.762	0.977	2.221			
TS2	1.994	2.092	1.089	2.461			i1056
FS					1.013	0.988	

Table S6. Calculated intermolecular distances (in Å) and imaginary Frequencies (IMF, cm^{-1}) for three iron titanium oxides (Fe₂TiO₅, Fe₂TiO₄, and FeTiO₃) during the reduction mechanism.

Figure S1. The XRD patterns for Fe_2TiO_5 . The upper symbols illustrate the observed data (black dot), calculated pattern (red line) and the difference between them (grey line).

Figure S2. The XRD patterns for Fe_2TiO_4 . The upper symbols illustrate the observed data (black dot), calculated pattern (red line) and the difference between them(grey line)

Figure S3. The XRD patterns for $FeTiO_{3}$. The upper symbols illustrate the observed data (black dot), calculated pattern (red line) and the difference between them (grey line).

(b)

Figure S4. Reactivity curves by TGA from 800-1000 °C using 20.4 % of H_2 as fuel. Fitting lines correspond to results predicted by the model using kinetic parameters from (a) Fe₂TiO₅, (b) Fe₂TiO₄, and (c) FeTiO₃ reduction.

Figure S5. The considered different adsorption sites for the H_2 molecule on Fe₂TiO₅ (0 2 2) surfaces.

Figure S6. The considered different adsorption sites for the H_2 molecule on Fe₂TiO₄ (3 1 1) surface

Figure S7. The considered different adsorption sites for the H_2 molecule on FeTiO₃ (1 0 4) surface

Figure S8. Total density of states of H_2 adsorbed on the three oxygen carriers ((a) when H_2 adsorbed on the surfaces in IS, (b) when adsorbed H_2 dissociates into H atoms in IM and (c) when H_2O formed on the surfaces in FS.)

Figure S9. Partial density of states of H_2 after adsorbed on the three oxygen carriers ((a) when H_2 adsorbed on the surfaces in IS, (b) when adsorbed H_2 dissociates into H atoms in IM and (c) when H_2O formed on the surfaces in FS.)

References:

- 1. P. Tiedemann and H. Müller-Buschbaum, *Zeitschrift für anorganische und allgemeine Chemie*, 1982, **494**, 98-102.
- B. A. Wechsler, D. H. Lindsley and C. T. Prewitt *Americal Mineralogist*, 1984, 69, 754.
- K. N. Raymond and H. R. Wenk, *Contributions to Mineralogy and Petrology*, 30, 135-140.