Supporting Information

Expanding Molecular Logic Capabilities in DNA-Scaffolded

MultiFRET Triads

Susan Buckhout-White^a, Carl W. Brown III^{a,c}, David A. Hastman Jr.^a, Mario G. Ancona^b,

Joseph S. Melinger^b, Ellen R. Goldman^a, and Igor L. Medintz^{a*}

Phosphoramidites:

Figure S1. Chemical structures of attached dyes

Optimization of loop and trigger strands

	Trig1	Trig2	Trig3
Loop1		0.21	0.34
Loop2	0.27		0.39
Loop3	0.06	1.9	

Table S1 - Off-target binding probabilities of LoopLink structure, in percent (assuming 500 nM concentration).

Figure S2. Structural optimization of LoopLink structure. Panels show secondary structure of various elements, optimized in NUPACK. (A) All loops as a single strand, best approximating potential intramolecular interactions of the linked strands within the switch structure. Individual strands were also modeled: (B) Loop1 (C) Loop2 (D) Loop3 (E) Trigger 1 (F) Trigger 2 (G) Trigger 3.

Figure S3. 2% agarose gel of the Dye-in-Loop switch structure. Gel analysis estimated 63% formation efficiency based on overall band intensity.

Figure S4. Output ratios for the 0-00-0, 1-1-1 and 2-2-2 spacing used in Figure 4. Thresholds shown in Fig 4F for the 0-0-0 structure is taken from the difference between the 000 and the 100 for the OR gate and between 001 and 101 for the AND gate. For all others the OR gate threshold is between 000 and 001 and the AND gate threshold is between 100 and101.

Table S2. DNA Sequences - Removable Linker

Name	Sequence	Modification	Tm (1X TAE 12.5 mM MgCl ₂)	Source
Arm 1	GGTTCAGCCGCAATCCGGCACAGCTATAATAA*GAGTTTGATGA AATGGAGCGGACGTGAGATGG	Internal Cy3	79.0	IDT
Arm2	GCAAGACTCGTGCTCAGGTCCTAAGTTGGTTCT*ACCGCATGGTA TATGGGGCTTACGGTGGTGCG	Internal Cy3.5 or Unilinker + AF488	79.7	Operon
Arm 3	GGATCAGAGCTGGACGGGAGCCTATCGGGTAG*TTATGTTGTTC GCTGGTGTTACTGCATCCAGG	Internal Cy5 or Unilinker + AF647	79.3	IDT
Cap 1	CCATCTCACGTCCGCTGGATTGCGGCTGAACC		76.7	IDT
Cap 2	CGCACCACCGTAAGCCTGAGCACGAGTCTTGC		76.5	IDT
Cap 3	CCTGGATGCAGTAACACGTCCAGCTCTGATCC		73.9	IDT
Link1 0 base spacing	GCCGGAGACCATATACCATGCGGTTTATTATAGCTGTGCC		75.0	IDT
Link1 1 base spacing	GCCGGAGACCATATACCATGCGGTATTATTATAGCTGTGCC		74.6	IDT
Link1 2 base spacing	GCCGGAGACCATATACCATGCGGTAATTATTATAGCTGTGCC		74.7	IDT
Link1 3 base spacing	GCCGGAGACCATATACCATGCGGTAAATTATTATAGCTGTGCC		74.7	IDT
Link1 6 base spacing	GCCGGAGACCATATACCATGCGGTAAAAAATTATTATAGCTGTG CC		75.0	IDT
Link1 9 base spacing	GCCGGAGACCATATACCATGCGGTAAAAAAAAATTATTATAGCT GTGCC		75.2	IDT
Link2 0 base spacing	CCTGTACGCCAGCGAACAACATAAGAACCAACTTAGGACC		75.1	IDT
Link2 1 base spacing	CCTGTACGCCAGCGAACAACATAATGAACCAACTTAGGACC		75.2	IDT

Link2 2 base spacing	CCTGTACGCCAGCGAACAACATAATAGAACCAACTTAGGACC	74.8	IDT
Link2 3 base spacing	CCTGTACGCCAGCGAACAACATAATAAGAACCAACTTAGGACC	74.8	IDT
Link2 6 base spacing	CCTGTACGCCAGCGAACAACATAATAATAAGAACCAACTTAGGA CC	74.6	IDT
Link2 9base spacing	CCTGTACGCCAGCGAACAACATAATAATAATAAGAACCAACTTA GGACC	74.5	IDT
Link3 0 base spacing	GATACGGACCATTTCATCAAACTCCTACCCGATAGGCTCC	74.4	IDT
Link3 1 base spacing	GATACGGACCATTTCATCAAACTCACTACCCGATAGGCTCC	74.3	IDT
Link3 2 base spacing	GATACGGACCATTTCATCAAACTCAACTACCCGATAGGCTCC	74.4	IDT
Link3 3 base spacing	GATACGGACCATTTCATCAAACTCAAACTACCCGATAGGCTCC	74.5	IDT
Link3 6 base spacing	GATACGGACCATTTCATCAAACTCAAATAAACTACCCGATAGGC TCC	74.4	IDT
Link3 9 base spacing	GATACGGACCATTTCATCAAACTCAAATAAATTCTACCCGATAG GCTCC	74.4	IDT
*in sequence indicate	s modifier placement		

Name	Sequence	Modification	Tm (1X TAE 12.5 mM MgCl ₂)	Source
Arm 1	GGTTCAGCCGCAATCCGGCACAGCTATAATAA*GAGTTTG ATGAAATGGAGCGGACGTGAGATGG	Internal Cy3	79.0	IDT
Arm2	GCAAGACTCGTGCTCAGGTCCTAAGTTGGTTCT*ACCGCA TGGTATATGGGGCTTACGGTGGTGCG	Internal Cy3.5	79.7	Operon
Arm 3	GGATCAGAGCTGGACGGGAGCCTATCGGGTAG*TTATGTT GTTCGCTGGTGTTACTGCATCCAGG	Internal Cy5	79.3	IDT
Cap 1	CCATCTCACGTCCGCTGGATTGCGGCTGAACC		76.7	IDT
Cap 2	CGCACCACCGTAAGCCTGAGCACGAGTCTTGC		76.5	IDT
Cap 3	CCTGGATGCAGTAACACGTCCAGCTCTGATCC		73.9	IDT
Loop Link1	CCATATACCATGCGGTTTAGTTAGAGTGAGACATAAAGC AAAGTTAGTGAGTGAGATTATTATAGCTGTGCC		76.9	IDT
Trigger 1	TCTCACTCTAACTAATCTCACTCACTAACTCAT CACAA		70.9	IDT
Comp 1	TCACTCACTAACTTTGCTTTATGTCTCACTCTAACT		70.7	IDT
Loop Link2	CCAGCGAACAACATAAGTATAGGGTTAAGGGTTCCATTT CAGTTTCATTTCA		77.6	IDT
Trigger 2	CCCTTAACCCTATACTACTTGAAATGAAACGCCCTTAT		71.8	IDT
Comp 2	CTTGAAATGAAACTGAAATGGAACCCTTAACCCTAT		70.9	IDT
Loop Link3	CCATTTCATCAAACTCGGATCAGATTTATCTTAGTGTTAG GTGTAGCAGGCATAGTCTACCCGATAGGCTCC		77.6	IDT
Trigger 3	AGATAAATCTGATCCACTATGCCTGCTACAGATACGGA		72.8	IDT
Comp 3	TATGCCTGCTACACCTAACACTAAGATAAATCTGAT		70.5	IDT
*in sequence indic	ates modifier placement			

Table S3. DNA Sequences - Looped Linker

Name	Sequence	Modification	Tm (1X TAE 12.5 mM MgCl ₂)	Source			
Arm 1	GGTTCAGCCGCAATCCGGCACAGCTATAATAA*GAGTT TGATGAAATGGAGCGGACGTGAGATGG	Internal Cy3	79.0	IDT			
Arm2	GCAAGACTCGTGCTCAGGTCCTAAGTTGGTTCT*ACCGC ATGGTATATGGGGCTTACGGTGGTGCG	Internal Cy3.5	79.7	Operon			
Arm 3	GGATCAGAGCTGGACGGGAGCCTATCGGGTAG*TTATG TTGTTCGCTGGTGTTACTGCATCCAGG	Internal Cy5	79.3	IDT			
Cap 1	CCATCTCACGTCCGCTTGAGCACGAGTCTTGC		75.3	IDT			
Cap 2	CGCACCACCGTAAGCCCGTCCAGCTCTGATCC		77.1	IDT			
Cap 3	CCTGGATGCAGTAACAGGATTGCGGCTGAACC		74.8	IDT			
Trigger 1	CCATTTCATCAAACTCGAACCAACTTAGGACC		70.5	IDT			
Comp 1	TTCATCAAACTCATTATTATAGCTG		61.4	IDT			
Trigger 2	CCATATACCATGCGGTCTACCCGATAGGCTCC		73.2	IDT			
Comp 2	ATACCATGCGGTAGAACCAACTTAG		66.8	IDT			
Trigger 3	CCAGCGAACAACATAATTATTATAGCTGTGCC		69.7	IDT			
Comp 3	CGAACAACATAAACTACCCGATAGG		65.4	IDT			
*in sequence indicates modifier placement							

Table S4. DNA Sequences – Dye-in-Loop

Fluorophores	Quantum	Quantum Extinction	λ_{max}	λ_{max}	<i>R</i> ₀ in Å / <i>J</i> (λ) in cm³ M⁻¹				
	yield	coefficient	absorption	emission	AF488	СуЗ	Cy3.5	Cy5	A647
		(M ⁻¹ cm ⁻¹)							
AF488	0.39	71,000	495 nm	519 nm	46/1.23e ⁻¹³	61/6.9e-13	59/5.93e-13	49/1.9 ^{e-13}	47/1.42e ⁻¹³
СуЗ	0.15	150,000	550 nm	570 nm		47/3.68e ⁻¹³	53/8.01e ⁻¹³	54/9.37e ⁻¹³	53/7.83e ⁻¹³
Су3.5	0.15	150,000	581 nm	596 nm			44/2.70e ⁻¹³	60/1.69e ⁻¹²	59/1.58e ⁻¹²
Cy5	0.28	250,000	649 nm	670 nm				65/1.39e ⁻¹²	
AF647	0.33	190,000	675 nm	694 nm					65/1.17e ₋₁₂

 Table S5. Fluorophore photophysical and FRET properties.