Supporting Information

Lineariifolianoids I-L, four rare sesquiterpene lactone dimers inhibiting NO production from *Inula lineariifolia*⁺

Li-ping Chen,^{a#} Guo-zhen Wu,^{a#} Hong-yuan Dong,^a Niao Yang,^a Wei-dong Zhang,^{*ab}

and Hui-liang Li.*a

^aDepartment of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai

200433, P. R. China.

^bShanghai Institute of Pharmaceutical Industry, Shanghai 200040, P. R. China.

*These authors contributed equally to this work.

Corresponding authors e-mail: wdzhangy@hotmail.com, faranli@hotmail.com

Contents

Table S1. ¹ H NMR (1 , 2 and 4 for 500 MHz, 3 for 600 MHz, <i>J</i> in Hz) Spectroscopic Data for 1-4	.4
Table S2. ¹³ C NMR (1 , 2 and 4 for 125 MHz, 3 for 150 MHz) Spectroscopic Data for 1-4	.6
Isolation procedure	.7
Figure S1. HRESIMS spectrum of Lineariifolianoid I (1)	.9
Figure S2. IR spectrum of Lineariifolianoid I (1)	10
Figure S3. OR Value of Lineariifolianoid I (1) in $CHCl_3$	11
Figure S4. CD spectra of Lineariifolianoid I (1) in CH₃CN	12
Figure S5. UV spectrum of Lineariifolianoid I (1) in CH ₃ OH/H ₂ O	13
Figure S6. ¹ H NMR spectrum of Lineariifolianoid I (1) in CDCl ₃	14
Figure S7. ¹³ C NMR spectrum of Lineariifolianoid I (1) in CDCl₃	15
Figure S8. DEPT spectrum of Lineariifolianoid I (1) in CDCl₃	16
Figure S9. HSQC spectrum of Lineariifolianoid I (1) in CDCl₃	17
Figure S10. ¹ H- ¹ H COSY spectrum of Lineariifolianoid I (1) in CDCl ₃	18
Figure S11. HMBC spectrum of Lineariifolianoid I (1) in CDCl₃	19
Figure S12. NOESY spectrum of Lineariifolianoid I (1) in CDCl ₃	20
Figure S13. X-ray structure of Lineariifolianoid I (1)	21
Figure S14. HRESIMS spectrum of Lineariifolianoid J (2)	22
Figure S15. IR spectrum of Lineariifolianoid J (2)	23
Figure S16. OR value of Lineariifolianoid J (2) in CHCl₃	24
Figure S17. CD spectra of Lineariifolianoid J (2) in CH₃CN	25
Figure S18. UV spectrum of Lineariifolianoid J (2) in CH₃OH/H₂O	26
Figure S19. ¹ H NMR spectrum of Lineariifolianoid J (2) in CD₃OD	27
Figure S20. ¹³ C NMR spectra of Lineariifolianoid J (2) in CD ₃ OD	28
Figure S21. DEPT spectra of Lineariifolianoid J (2) in CD₃OD	29
Figure S22. HSQC spectrum of Lineariifolianoid J (2) in CD₃OD	30
Figure S23. ¹ H- ¹ H COSY spectrum of Lineariifolianoid J (2) in CD ₃ OD	31
Figure S24. HMBC spectrum of Lineariifolianoid J (2) in CD₃OD	32
Figure S25. NOESY spectrum of Lineariifolianoid J (2) in CD₃OD	33
Figure S26. X-ray structure of Lineariifolianoid J (2)	34
Figure S27. HRESIMS spectrum of Lineariifolianoid K (3)	35
Figure S28. IR spectrum of Lineariifolianoid K (3)	36
Figure S29. OR Value of Lineariifolianoid K (3) in CHCl₃	37
Figure S30. CD spectra of Lineariifolianoid K (3) in CH₃CN	38
Figure S31. UV spectrum of Lineariifolianoid K(3) in CH₃OH/H₂O	39
Figure S32. ¹ H NMR spectrum of Lineariifolianoid K (3) in CD ₃ OD ²	40

Figure S33. ¹³ C NMR spectra of Lineariifolianoid K (3) in CD ₃ OD	41
Figure S34. DEPT spectra of Lineariifolianoid K (3) in CD₃OD	42
Figure S35. HSQC spectrum of Lineariifolianoid K (3) in CD ₃ OD	43
Figure S36. ¹ H- ¹ H COSY spectrum of Lineariifolianoid K (3) in CD ₃ OD	44
Figure S37. HMBC spectrum of Lineariifolianoid K (3) in CD ₃ OD	45
Figure S38. NOESY spectrum of Lineariifolianoid K (3) in CD ₃ OD	46
Figure S39. HRESIMS spectrum of Lineariifolianoid L (4)	47
Figure S40. IR spectrum of Lineariifolianoid L (4)	48
Figure S41. OR Value of Lineariifolianoid L (4) in CHCl ₃	49
Figure S42. CD spectra of Lineariifolianoid L (4) in CH ₃ CN	50
Figure S43. UV spectrum of Lineariifolianoid L (4) in CH ₃ CN/H ₂ O	51
Figure S44. ¹ H NMR spectrum of Lineariifolianoid L (4) in CDCl ₃	52
Figure S45. ¹³ C NMR spectra of Lineariifolianoid L (4) in CDCl ₃	53
Figure S46. DEPT spectra of Lineariifolianoid L (4) in CDCl₃	54
Figure S47. HSQC spectrum of Lineariifolianoid L (4) in CDCl₃	55
Figure S48. ¹ H- ¹ H COSY spectrum of Lineariifolianoid L (4) in CDCl ₃	56
Figure S49. HMBC spectrum of Lineariifolianoid L (4) in CDCl ₃	57
Figure S50. NOESY spectrum of Lineariifolianoid L (4) in CDCl ₃	58
Measurement of LPS-Induced NO Production	59
Table S3. IC ₅₀ values (μ M) of 1-4 from <i>Inula lineariifolia</i> against LPS-induced nitr	ic oxide (NO)
production	59

NO	1	2	3	4
1	2.10, t (5.5)	-	-	-
2	3.83, m	2.29 <i>,</i> m	2.41, m, 2.22, m	2.37, m, 2.23, m
3	1.75, m, overlapped	2.67,m , 2.49, m	2.63, m, overlapped, 2.47, m	2.55, m, 2.42, m, overlapped
4	4.35, dt (11.4, 6.6×2),	-	-	-
	4.13, dt (11.2, 5.5×2)			
5	-	5.74, d (8.2)	5.60, d (9.3)	5.36 <i>,</i> s
6	4.99, brd (1.0)	5.40, d (8.9)	2.27, m, 2.10, m	4.60 <i>,</i> d (9.8)
7	3.31, brd (10.2)	2.76, dd (6.9, 1.6)	2.55, ddd (12.8, 5.9, 2.1)	2.42, m, overlapped
8	4.44, td (10.3×2, 6.1)	5.00, dt (11.8, 6.1×2)	4.94, dt (11.0, 5.7×2)	4.76. dt (5.9×2, 5.0)
9	2.57, m, 1.54, m	2.37, m, 2.21, m	2.07 <i>,</i> m	2.25, m,
				1.91, m, overlapped
10	2.07, m, overlapped	2.49 <i>,</i> m	2.44 <i>,</i> m	2.34, m
13	2.27, dd (12.6, 3.8),	1.63, d (11.9)	2.41, m,	3.00, m, overlapped,
	1.97, d (12.4)		1.67, d (12.2)	1.91, m, overlapped
14	1.05, d (7.1)	1.19, d (7.0)	1.16, d (7.2)	1.15, d (7.1)
15	1.76, s	2.12, s	2.12, s	2.14, s
2′	3.46, brd (9.2)	4.74, s	4.67, s	4.51, s
3′	2.63, m	2.93, d (1.6)	2.94, d (1.6)	2.89, d (1.4)
6′	2.80, m,	4.78, d (6.7)	4.78 <i>,</i> d (6.7)	3.00, m, overlapped,

Table S1. ¹H NMR (1, 2 and 4 for 500 MHz, 3 for 600 MHz, J in Hz) Spectroscopic Data for 1-4

	2.15, m			2.09, m, overlapped
7'	2.52, m	3.24, ddt (10.4, 6.8, 3.2×2)	3.23, ddt (10.4, 6.9, 3.2×2)	2.81, brt (10.1)
8′	4.22, m	4.24, td (10.1×2, 7.2)	4.25, td (10.2×2, 7.2)	4.19, td (9.5×2, 3.3)
9′	2.35, m,	1.87, m	2.21, m, 1.89, m	2.30, m,
	2.05, m, overlapped			1.91, m, overlapped
10′	2.91, brt (7.4×2)	2.62, m	2.62, ddt (16.3, 8.2, 5.7×2)	2.14, m, overlapped
13′	6.18, d (3.0),	6.17, d (3.7), 5.92, s	6.16, d (3.7), 5.92, brd (1.2)	6.22, d (3.1),
	5.46, d (3.0),			5.53, d (3.1)
14'	1.19, d (7.2)	1.07, d (7.0)	1.10, d (7.2)	1.02, d (7.3)
15′	1.81, d (1.6)	1.70, s	1.70, s	1.66, d (1.5)
2"	2.07, s	2.00, s	2.02, s	2.09, s
2‴	-	1.96, s	<u>-</u>	-

Table S2. ¹³ C NMR (1, 2 and 4 f	or 125 MHz, 3 foi	r 150 MHz) Spec	troscopic
---	--------------------------	-----------------	-----------

NO	1	2	3	4
1	54.5	152.1	145.8	143.5
2	68.8	30.1	32.2	30.5
3	35.4	41.3	43.1	42.1
4	62.2	208.8	211.0	207.5
5	141.8	120.2	124.2	132.4
6	121.2	69.0	25.0	66.7
7	49.5	48.8	48.9	52.3
8	80.9	78.7	81.4	78.0
9	39.6	37.8	38.2	36.2
10	29.2	31.3	32.9	32.0
11	57.3	54.0	56.9	55.8
12	184.1	180.1	181.9	178.3
13	33.4	33.3	35.0	35.9
14	22.9	20.5	22.0	21.2
15	25.7	28.4	29.8	29.7
1'	68.2	59.5	61.0	62.5
2′	85.7	81.3	82.6	81.8
3'	52.0	57.9	59.3	57.7
4′	138.8	137.6	139.4	132.9
5'	134.1	140.2	141.3	136.6
6'	25.6	68.7	70.3	26.0
7′	44.4	48.4	49.8	45.2
8′	81.5	76.8	78.3	82.4
9′	36.4	38.0	39.5	35.9
10′	26.3	28.8	30.4	29.9
11′	139.9	140.5	141.9	139.4
12′	169.6	170.4	171.9	170.3
13′	118.6	119.5	121.3	119.5
14′	18.9	15.4	16.9	17.0
15′	13.7	12.3	13.8	14.2
1"	171.4	169.8	171.5	170.2
2"	20.9	20.1	21.5	21.1
1‴	-	170.2	-	-
2'''	-	19.5	-	-

Data for 1-4

Isolation procedure

General. Column chromatography (CC): silica gel H (10-40 μ m) and silica gel (200-300 mesh) (Marine Chemical Factory, Qingdao, P. R. China); Sephadex LH-20 (Pharmacia Fine Chemicals, Piscataway, NJ, USA); RP-C18 gel (40-63 μ m; Daiso, Co., Japan). TLC: silica gel plates (Yantai Jiang You silicone development co., Yantai, P. R. China), visualization by spraying with 10 % H₂SO₄ in EtOH. Semi-preparative HPLC: Agilent 1260 series with a Zorbax SB-C18 (5 μ m, 9.4 mm × 25 cm) column. Melting point: X-4B digital display micro-melting apparatus (Shanghai jingsong instrument product, Shanghai, P. R. China). Optical rotation: Autopol VI (Rudolph Research Analytical, Hackettstown, NJ). CD spectra: Brighttime Chirascan (Applied Photophysics Ltd, UK). UV spectra: Agilent 1260 series DAD detector (Agilent Technologies, US). IR: Thermo Scientific Nicolet 6700 (Thermo Scientific, US). NMR Spectra: Bruker Avance III-500 and Avance III-600 spectrometers (Bruker, Switzerland). MS: Agilent MSD-Trap-XCT (for ESI) and Q-Tof micro mass spectrometer (for HR-ESI).

Plant Material. The aerial parts of *Inula lineariifolia* was collected from Liaoning province of China in March 2016, and were authenticated by Professor Bao-Kang Huang, Department of Pharmacognosy, School of Pharmacy, Second Military Medical University. A voucher specimen (No. 201603-IL) is deposited in the Department of Pharmacognosy, Second Military Medical University

Isolation. The air-dried aerial parts of *I. lineariifolia* (500 Kg) was extracted three times with 80% ethanol at room temperature to afford a crude extract (12.72 kg), which further partitioned by petroleum ether and CH₂Cl₂, giving a CH₂Cl₂-soluble fraction (6.86 kg). The CH₂Cl₂ fraction was segmented by silica gel (petroleum ether/EtOAC 5:1 and 1:1, respectively) to give two fractions. The second fraction (P/E 1:1, 1.70 Kg) was dissolved in 5L EtOAC, and filtered to eliminate the large amount of crystal (Britanin, 1.12 Kg, a major monomer in title plant). The concentrated filtrate (510 g) was chromatographed over MCl gel (MeOH/H₂O, from 40 to 90%) to give Fr.1-Fr.6. Subsequently, Fr.4-Fr.6 were purified by semi-preparative and preparative HPLC (CH₃CN/H₂O from 40 to 60%), yielding **1** (157 mg), **2** (12.75 g), **3** (86 mg) and **4** (114 mg).

Compound characterization of 1–4

Lineariifolianoid I (1). Optically active colourless orthorhombic crystal in MeOH; m.p.: 189-192°C; $[\alpha]_{D}^{25}$ -164.2 (*c* 0.048, CHCl₃); UV (CH₃OH/H₂O) λ_{max} 210 nm; IR (KBr) v_{max} 3396, 2960, 2877, 1770, 1727, 1664, 1644, 1454, 1434;, 1403, 1382, 1243, 1160, 1033, 977, 813, 725, 607 cm⁻¹; ¹H- and ¹³C-NMR data, see Table S1-S2; ESIMS *m/z* 577.4 ([M+Na]⁺), 553.3 ([M-H]⁻); positive HRESIMS at *m/z* 577.2788 ([M+Na]⁺, calcd 577.6603).

Lineariifolianoid J (2). Optically active colourless orthorhombic crystal in MeOH; m.p.: 191-193°C; $[\alpha]_{D}^{25}$ +186.3 (*c* 0.062, CHCl₃); UV (CH₃OH/H₂O) λ_{max} 210 nm; IR (KBr) v_{max} 3633, 3515, 2994, 2971, 2940, 2898, 2636, 2599, 1778, 1739, 1710, 1666, 1643, 1619, 1465, 1438, 1373, 1307, 1274, 1238,1153, 1056, 1020, 998, 958, 611 cm⁻¹; ¹H- and ¹³C-NMR data, see Table S1-S2; ESIMS *m/z* 633.3 ([M+Na]⁺), 609.3 ([M-H]⁻); positive HRESIMS at *m/z* 633.2678 ([M+Na]⁺, calcd 633.6805).

Lineariifolianoid K (3). Optically active colourless oil; $[\alpha]_{D}^{25}$ +173.4 (*c* 0.059, CHCl₃); UV (CH₃OH/H₂O) λ_{max} 220 nm; IR (KBr) v_{max} 3478, 2964, 2938, 1766, 1739, 1714, 1666, 1648, 1461, 1444, 1378, 1234, 1157, 1031, 954, 815, 698, 609 cm⁻¹; ¹H- and ¹³C-NMR data, see Table S1-S2; ESIMS *m/z* 575.3 ([M+Na]⁺), 551.3 ([M-H]⁻); positive HRESIMS at *m/z* 575.2625 ([M+Na]⁺, calcd 575.7444).

Lineariifolianoid L (4). Optically active colourless oil; $[\alpha]_{D}^{25}$ +41.9 (*c* 0.062, CHCl₃); UV (CH₃CN/H₂O) λ_{max} 220 nm; IR (KBr) v_{max} 3446, 2965, 2937, 1881, 1766, 1739, 1716, 1664, 1648, 1444, 1405, 1376, 1238, 1166, 1128, 1052, 1029, 991, 904, 815, 603 cm⁻¹; ¹H- and ¹³C-NMR data, see Table S1-S2; ESIMS m/z 575.4 ([M+Na]⁺), 551.3 ([M-H]⁻); positive HRESIMS at *m/z* 575.2634 ([M+Na]⁺, calcd 575.7444).

Figure S1. HRESIMS spectrum of Lineariifolianoid I (1)

Figure S2. IR spectrum of Lineariifolianoid I (1)

Monday, 07/18/2016

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotID : XFH-5

Set Temperature : 20.0 Temp Corr : OFF

n Av 6 -10	Verage 84.236	Std.D 0.8504)ev.		Maximun -162.500	1		Mini -164.8	mum 583	
S.N o 1	Sample ID XFH-5	Time 09:35:59 AM	Result -164.583	Scale SR	OR ° Arc -0.079	WLG 589	Lg.mm 100.00	Conc. 0.048	Temp. 19.9	Comment
2	XFH-5	09:36:07 AM	-164.583	SR	-0.079	589	100.00	0.048	20.0	
3	XFH-5	09:36:15 AM	-164.583	SR	-0.079	589	100.00	0.048	20.0	
4	XFH-5	09:36:23 AM	-162.500	SR	-0.078	589	100.00	0.048	20.0	
5	XFH-5	09:36:30 AM	-164.583	SR	-0.079	589	100.00	0.048	20.0	
6	XFH-5	09:36:38 AM	-164.583	SR	-0.079	589	100.00	0.048	20.0	

Signature

Figure S3. OR Value of Lineariifolianoid I (1) in CHCl₃

Figure S4. CD spectra of Lineariifolianoid I (1) in CH₃CN

Figure S5. UV spectrum of Lineariifolianoid I (1) in CH₃OH/H₂O

Figure S6. ¹H NMR spectrum of Lineariifolianoid I (1) in CDCl₃

Figure S7. ¹³C NMR spectrum of Lineariifolianoid I (1) in CDCl₃

Figure S8. DEPT spectrum of Lineariifolianoid I (1) in CDCl₃

Figure S9. HSQC spectrum of Lineariifolianoid I (1) in $CDCI_3$

Figure S10. ¹H-¹H COSY spectrum of Lineariifolianoid I (1) in CDCl₃

Figure S11. HMBC spectrum of Lineariifolianoid I (1) in $CDCI_3$

Figure S12. NOESY spectrum of Lineariifolianoid I (1) in $CDCI_3$

Figure S13. X-ray structure of Lineariifolianoid I (1)

Figure S14. HRESIMS spectrum of Lineariifolianoid J (2)

Figure S15. IR spectrum of Lineariifolianoid J (2)

Tuesday, 07/19/2016

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotID : XFH-S5 Set Temperature : 20.0 Temp Corr : OFF

n Av 6 18	verage 6.291	Std.D 0.8835	ev.		Maximum 187.097	1		Minii 185.48	mum ⁸⁴	
S.N o 1	Sample ID XFH-S5	Time 02:59:05 PM	Result 187.097	Scale sr	OR ° Arc 0.116	WLG 589	Lg.mm 100.00	Conc. 0.062	Temp. 19.9	Comment
2	XFH-S5	02:59:13 PM	187.097	SR	0.116	589	100.00	0.062	19.9	
3	XFH-S5	02:59:20 PM	185.484	SR	0.115	589	100.00	0.062	19.9	
4	XFH-S5	02:59:27 PM	185.484	SR	0.115	589	100.00	0.062	19.9	
5	XFH-S5	02:59:35 PM	185.484	SR	0.115	589	100.00	0.062	20.0	
6	XFH-S5	02:59:42 PM	187.097	SR	0.116	589	100.00	0.062	20.0	

Signature

Figure S16. OR value of Lineariifolianoid J (2) in CHCl₃

Figure S17. CD spectra of Lineariifolianoid J (2) in CH₃CN

Figure S18. UV spectrum of Lineariifolianoid J (2) in CH₃OH/H₂O

Figure S19. ¹H NMR spectrum of Lineariifolianoid J (2) in CD₃OD

Figure S20. ¹³C NMR spectra of Lineariifolianoid J (2) in CD₃OD

Figure S21. DEPT spectra of Lineariifolianoid J (2) in CD₃OD

Figure S22. HSQC spectrum of Lineariifolianoid J (2) in CD₃OD

Figure S23. ¹H-¹H COSY spectrum of Lineariifolianoid J (2) in CD₃OD

Figure S24. HMBC spectrum of Lineariifolianoid J (2) in CD₃OD

Figure S25. NOESY spectrum of Lineariifolianoid J (2) in CD₃OD

Figure S26. X-ray structure of Lineariifolianoid J (2)

Figure S27. HRESIMS spectrum of Lineariifolianoid K (3)

Figure S28. IR spectrum of Lineariifolianoid K (3)

Tuesday, 07/19/2016

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotID : XFH-3 Set Temperature : 20.0 Temp Corr : OFF

n Av 6 17	verage 3.446	Std.D 0.8753	lev.		Maximun 174.576	n		Mini 172.8	mum 81	
S.No	Sample ID	Time	Result	Scale	OR ° Arc	WLG	Lg.mm	Conc.	Temp.	Comment
1	XFH-3	03:02:35 PM	172.881	SR	0.102	589	100.00	0.059	20.0	
2	XFH-3	03:02:43 PM	172.881	SR	0.102	589	100.00	0.059	20.0	
3	XFH-3	03:02:51 PM	172.881	SR	0.102	589	100.00	0.059	20.0	
4	XFH-3	03:02:58 PM	172.881	SR	0.102	589	100.00	0.059	20.0	
5	XFH-3	03:03:06 PM	174.576	SR	0.103	589	100.00	0.059	20.0	
6	XFH-3	03:03:14 PM	174.576	SR	0.103	589	100.00	0.059	20.0	

Signature

Figure S29. OR Value of Lineariifolianoid K (3) in CHCl₃

Figure S30. CD spectra of Lineariifolianoid K (3) in CH_3CN

Smooth (s):0

1

Figure S31. UV spectrum of Lineariifolianoid K(3) in CH₃OH/H₂O

Figure S32. ¹H NMR spectrum of Lineariifolianoid K (3) in CD₃OD

Figure S33. ¹³C NMR spectra of Lineariifolianoid K (3) in CD₃OD

Figure S34. DEPT spectra of Lineariifolianoid K (3) in CD₃OD

Figure S35. HSQC spectrum of Lineariifolianoid K (3) in CD₃OD

Figure S36. ¹H-¹H COSY spectrum of Lineariifolianoid K (3) in CD₃OD

Figure S37. HMBC spectrum of Lineariifolianoid K (3) in CD₃OD

Figure S38. NOESY spectrum of Lineariifolianoid K (3) in CD₃OD

Figure S39. HRESIMS spectrum of Lineariifolianoid L (4)

Figure S40. IR spectrum of Lineariifolianoid L (4)

Tuesday, 07/19/2016

This sample was measured on an Autopol VI, serial number 90079, manufactured by Rudolph Research Analytical, Hackettstown, NJ.

LotiD : XFH-13 Set Temperature : 20.0 Temp Corr : OFF

n Av 6 41	verage .935	Std.D 0.0000	ev.		Maximun 41.935	n		Mini 41.93	mum 5	
S.No	Sample ID	Time	Result	Scale	OR ° Arc	WLG	Lg.mm	Conc.	Temp.	Comment
1	XFH-13	03:06:11 PM	41.935	SR	0.026	589	100.00	0.062	20.1	
2	XFH-13	03:06:19 PM	41.935	SR	0.026	589	100.00	0.062	20.1	
3	XFH-13	03:06:27 PM	41.935	SR	0.026	589	100.00	0.062	20.1	
4	XFH-13	03:06:35 PM	41.935	SR	0.026	589	100.00	0.062	20.1	
5	XFH-13	03:06:43 PM	41.935	SR	0.026	589	100.00	0.062	20.1	
6	XFH-13	03:06:50 PM	41.935	SR	0.026	589	100.00	0.062	20.1	

Signature

Figure S41. OR Value of Lineariifolianoid L (4) in CHCl₃

Figure S42. CD spectra of Lineariifolianoid L (4) in CH₃CN

Figure S43. UV spectrum of Lineariifolianoid L (4) in CH₃CN/H₂O

Figure S44. ¹H NMR spectrum of Lineariifolianoid L (4) in CDCl₃

Figure S45. ¹³C NMR spectra of Lineariifolianoid L (4) in CDCl₃

Figure S46. DEPT spectra of Lineariifolianoid L (4) in CDCl₃

Figure S47. HSQC spectrum of Lineariifolianoid L (4) in $CDCI_3$

Figure S48. ¹H-¹H COSY spectrum of Lineariifolianoid L (4) in CDCl₃

Figure S49. HMBC spectrum of Lineariifolianoid L (4) in CDCl₃

Figure S50. NOESY spectrum of Lineariifolianoid L (4) in CDCl₃

Measurement of LPS-Induced NO Production

RAW 264.7 cells were seeded in 96-well culture plates at 5×10^5 cells/well at 37 °C for 12 h in DMEM medium. The cells were pretreated with different concentrations of samples for 12 h and then incubated for 24 h with or without 1 µg/mL LPS. The nitrite concentration in the culture supernatant was measured using Griess reagent (1% sulfanilamide, 0.1% N-1-naphthylenediamine dihydrochloride and 2.5% phosphoric acid). The absorbance was measured at 540 nm after incubation for 15 min. The nitrite levels in the samples were calculated from a standard curve created using known concentrations of sodium nitrite. Cell viability was measured by a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (Beyotime, China).

RAW 264.7 cells were purchased from ATCC. Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum were purchased from Gibco Invitrogen (Carlsbad, CA, USA). LPS, Griess reagent was purchased from Sigma-Aldrich (St. Louis, MO, USA).

Table S3. IC₅₀ values (μ M) of **1-4** from *Inula lineariifolia* against LPS-

NO	1	2	3	Mean±SD
				IC ₅₀ (μM)
Compound 1	1.098	1.023	0.9517	1.024±0.059
Compound 2	2.366	1.517	1.484	1.789±0.48
Compound 3	9.738	10.41	10.01	10.02±0.27
Compound 4	10.54	10.09	9.869	10.16±0.27
Aminoguanidine	2.98	3.14	3.09	3.06±0.081

induced nitric oxide (NO) production

a. Aminoguanidine was positive control.

b. Compounds **1-4** were not exhibited significantly cytotoxic at the concentrations required for inhibition NO production (as determined by MTT assay).