Supporting Information

A simple grinding-calcination approach to prepare Co₃O₄-In₂O₃

heterojunction structure with high-performance gas-sensing

property to ethanol

Kai Song, Xiaoqian Meng, Jianli Zhang, Yue Zhang, Xin Wang, Junwu Zhu*

Fig. S1 XRD patterns of (a) pure In_2O_3 , (b) Co_3O_4 - In_2O_3 (0.5%), (c) Co_3O_4 - In_2O_3

(2%), (d) Co₃O₄-In₂O₃ (5%) and (e) Co₃O₄-In₂O₃ (10%).

Fig. S2 TEM images of (a, b) pure In_2O_3 nanoparticles and (c, d) pure Co_3O_4

nanoparticles.

Fig. S3 The response of samples with some other different contents of Co₃O₄ towards

100 ppm ethanol.

Fig. S4 The response of pure In_2O_3 and Co_3O_4 - In_2O_3 (10 %) towards 100 ppm ethanol

in different humidity.