## SUPPORTING INFORMATION

## Facile Synthesis of Dimeric Titanium (IV) Complex with Terminal Ti=O Moiety and Its Application as a Catalyst for Cycloaddition Reaction of CO<sub>2</sub> to Epoxides

Hyejin Kim,<sup>‡a</sup> Sung Ho Choi,<sup>‡a</sup> Duseong Ahn,<sup>a</sup> Yoseph Kim,<sup>a</sup> Ji Yeon Ryu,<sup>b</sup> Junseong Lee<sup>\*b</sup>

## and Youngjo Kim\*a

<sup>a</sup> Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

<sup>b</sup> Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea ‡ The first and second authors contributed equally to the work.



Figure S1. <sup>1</sup>H NMR spectrum of HOCMe<sub>2</sub>CH<sub>2</sub>NC<sub>5</sub>H<sub>4</sub>NCH<sub>2</sub>CMe<sub>2</sub>OH (LH<sub>2</sub>) in CDCl<sub>3</sub>



Figure S2. <sup>1</sup>H NMR spectrum of HOCMe<sub>2</sub>CH<sub>2</sub>NC<sub>5</sub>H<sub>4</sub>NCH<sub>2</sub>CMe<sub>2</sub>OH (LH<sub>2</sub>) in CD<sub>3</sub>OD



110 100 f1 (ppm) 

Figure S4. <sup>13</sup>C NMR spectrum of HOCMe<sub>2</sub>CH<sub>2</sub>NC<sub>5</sub>H<sub>4</sub>NCH<sub>2</sub>CMe<sub>2</sub>OH (LH<sub>2</sub>) in CDCl<sub>3</sub>



Figure S5. <sup>13</sup>C NMR spectrum of HOCMe<sub>2</sub>CH<sub>2</sub>NC<sub>5</sub>H<sub>4</sub>NCH<sub>2</sub>CMe<sub>2</sub>OH (LH<sub>2</sub>) in CD<sub>3</sub>OD



C13H22N2O2, M+nH ,239.18







Figure S8. <sup>1</sup>H NMR spectrum of LTi(O-*i*Pr)<sub>2</sub> (1) in CD<sub>3</sub>OD



Figure S10. <sup>13</sup>C NMR spectrum of  $LTi(O-iPr)_2$  (1) in CD<sub>3</sub>OD



Figure S12. <sup>1</sup>H NMR spectrum of  $[LTi(=O)]_2$  (2) in CD<sub>3</sub>OD



Figure S14. <sup>13</sup>C NMR spectrum of  $[LTi(=O)]_2$  (2) in CDCl<sub>3</sub>



**Figure S16.** <sup>1</sup>H NMR spectrum in CDCl<sub>3</sub> for the compound obtained after wet air bubbling of  $LTi(O-iPr)_2$  (1)





**Figure S18.** <sup>1</sup>H NMR spectrum in CD<sub>3</sub>OD in CD<sub>3</sub>OD for the compound after dry air bubbling of LTi(O-*i*Pr)<sub>2</sub> (1)



Figure S19. <sup>1</sup>H NMR spectrum of cyclic propylene carbonate (Table 3, entry 1)



Figure S20. <sup>13</sup>C NMR spectrum of cyclic propylene carbonate (Table 3, entry 1)



Figure S21. <sup>1</sup>H NMR spectrum of cyclic 1,2-butylene carbonate (Table 3, entry 2)



Figure S22. <sup>13</sup>C NMR spectrum of cyclic 1,2-butylene carbonate (Table 3, entry 2)



Figure S23. <sup>1</sup>H NMR spectrum of cyclic 1,2-hexylene carbonate (Table 3, entry 3)



Figure S24. <sup>13</sup>C NMR spectrum of cyclic 1,2-hexylene carbonate (Table 3, entry 3)



Figure S26. <sup>13</sup>C NMR spectrum of cyclic 3-chloropropylene carbonate (Table 3, entry 4)



Figure S27. <sup>1</sup>H NMR spectrum of cyclic 3-methoxypropylene carbonate (Table 3, entry 5)



Figure S28. <sup>13</sup>C NMR spectrum of cyclic 3-methoxypropylene carbonate (Table 3, entry 5)



Figure S29. <sup>1</sup>H NMR spectrum of cyclic 3-t-butoxypropylene carbonate (Table 3, entry 6)



Figure S30. <sup>13</sup>C NMR spectrum of cyclic 3-t-butoxypropylene carbonate (Table 3, entry 6)



Figure S31. <sup>1</sup>H NMR spectrum of cyclic 1,1-dimethylethylene carbonate (Table 3, entry 7)



Figure S32. <sup>13</sup>C NMR spectrum of cyclic 1,1-dimethylethylene carbonate (Table 3, entry 7)