Supporting Information

Dual functional fluorescent sensor for selectively detecting acetone and Fe³⁺ based on {Cu₂N₄} substructure bridged Cu(I) coordination polymer

Yang Song^a, Ruiqing Fan^{*,a}, Xi Du^a, Kai Xing^a, Yuwei Dong^a, Ping Wang^a, and Yulin Yang^{*,a}

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China

No.	luminescent materials	solution	detection limit	ref
1	$ \{ [Cd_3(L)_2(H_2O)_6] \cdot 1.5DMF \} \\ (H_3L=4,4',4''-(methylsilanetriyl) \\ tribenzoic acid) $	aqueous solutions	3 vol%	<i>Chin. Chem. Lett.</i> 2016, 27, 497
2	$[Cd(Tipb)(pta)_{0.5}(H_2O)-(NO_3)] \cdot (DMF)_x$ $(H_2O)_y$ $(Tipb=2,4,6-tris[4-(1Himidazole-1-yl)]-benzene, pta = para-phthalate)$	acetonitrile	0.084vol% decreased by 83%	J. Mater. Chem. A, 2014, 2 , 9469
3	[Cd(Tipb)(mta)] ·(DMF) _x (H ₂ O) _y (Tipb=2,4,6-tris[4-(1Himidazole-1- yl)]-benzene, mta= meta-phthalate)	acetonitrile	0.075vol% decreased by 94%	J. Mater. Chem. A, 2014, 2 , 9469
4	$\{[Tb_4(\mu_3-OH)_4(BPDC)_3(BPDCA)_{0.5}(H_2O)_6]ClO_4 \\ \cdot 5H_2O \\ (BPDC^{2-} = 3,3'-dicarboxylate-2,2'-dipyridine anion and BPDCA^{2-} = biphenyl-4,4'-dicarboxylate anion)$	EtOH	21vol%	J. Phys. Chem. C. 2014, 118 , 416
5	Ln(FBPT)(H ₂ O)(DMF) (Ln = Eu or Tb, FBPT = 2'-fluoro- biphenyl-3,4',5-tricarboxylate	DMF	5%	J. Mater. Chem. A 2013, 1 , 11043
6	Tb(BTC)(H_2O) ₆ (BTC = benzenetricarboxylate)	aqueous suspension	0.3vol%	J. Mater. Chem., 2012, 22 , 6819.
7	$Cd_3(L)(H_2O)_2(DMF)2.5DMF$ ($H_6L=hexa[4-$ (carboxyphenyl)oxamethyl]-3- oxapentane acid)	1-propanol	0.1vol%	J. Mater. Chem., 2012, 22 , 23201.
8	$Cd_3(L)(dib) \cdot 3H_2O \cdot 5DMA$ ($H_6L=hexa[4-$ (carboxyphenyl)oxamethyl]-3- oxapentane acid, dib = 1,4-bis(1- imidazolyl)benzene)	1-propanol	0.1vol%	J. Mater. Chem., 2012, 22, 23201.
9	Yb(BPT)(H ₂ O) \cdot (DMF) _{1.5} (H ₂ O) _{1.25} (BPT = biphenyl-3,4',5-tricarboxylate)	2-propanol	0.5vol%	<i>Chem. Commun.</i> 2011, 47 , 5551
10	Eu ₂ (pzdc)(pzdc)(ox)(H ₂ O) ₄ ·8H ₂ O	methanol	0.5vol%	<i>CrystEngComm</i> , 2010, 12 ,

 Table S1 Selected luminescent compound materials for sensing acetone.

	(pzdc = 2,5-pyrazinedicarboxylate, ox =oxalate)			4372.
11	Eu(BTC) (BTC = benzenetricarboxylate)	DMF	0.3 vol %	Adv. Mater. 2007, 19, 1693
12	$[Cu(tpp)\bullet H_2O]_{2n}$ [Htpp = 1-(4-tetrazol-5"-yl)benzyl-3 - (pyraziny-l)pyrazole]	aqueous suspension	0.0842vol%	This work

Table S2 Selected luminescent compound materials for sensing Fe^{3+} .

No.	luminescent materials	solution	K_{sv} / detection limit	ref
1	Ba5(ADDA)5(EtOH)2(H2O)3.5DMF	methanol (turn-off)	1.68×10^4 / 10^{-6} M	Inorg. Chem. 2016,
	$H_2ADDA = 3,3$ '-(anthracene-9,10-diyl)	acetone (turn-off)	None/2.1×10 ⁻⁷ M	55 , 1782
	diacrylic acid	THF (turn-on)	-9.09×10 ³ / 10 ⁻⁶ M	
2	$\{[Eu(L)(H_2O)_2] \bullet NMP \bullet H_2O\}_n$	DMF	3.83×10^4 / none	Inorg. Chem. 2016,
	(NMP = Nmethyl-2-pyrrolidone)	HEPES	2.55×10^4 / none	55 , 10114
3	{[Cd ₃ (L) ₂ (H ₂ O) ₆] • 1.5DMF} (H ₃ L=4,4',4''-(methylsilanetriyl) tribenzoic acid)	aqueous solutions	None / 1×10-2 M	Chin. Chem. Lett. 2016, 27 , 497
4	$\label{eq:constraint} \begin{split} &\{[Tb_4(OH)_4(DSOA)_2(H_2O)_8]\cdot(H_2O)_8\}_n\\ &Na_2H_2DSOA=&disodium-2,20-\\ &disulfonate-4,4'-oxydibenzoic acid \end{split}$	aqueous solutions	3543 / none	J. Mater. Chem. A. 2015, 3 , 641
5	$[Tb(BTB)(DMF)] \cdot 1.5DMF \cdot 2.5H2O$ (H ₃ BTB = benzene-1,3,5-tribenzoate)	ethanol	None / 10 ⁻⁵ M	Inorg. Chem. 2015, 54 , 4585
6	EuL (L=2-aminoterephthalic acid)	DMF	2.88×10 ⁴ / none	J. Mater. Chem. C, 2014, 2 , 6758
7	$[H_2N(CH_3)_2][Eu(H_2O)_2(BTMIPA)] \cdot 2H_2$ O {H_4BTMIPA = 5,5'-methylenebis- (2,4,6-trimethylisophthalic acid)}	DMF	None / 10 ⁻³	<i>Chem. Commun.</i> 2013, 49 , 11557
8	EuL ₃ (L = 4'-(4-carboxyphenyl)-2,2': 6',2''- terpyridine)	aqueous solution	$4.1 \times 10^3 / 10^{-4} M$	ACS Appl. Mater. Interfaces 2013, 5 , 1078
9	$[Eu(BTPCA)(H_2O)] \cdot 2DMF \cdot 3H_2O$ (H_3BTPCA = 1,1',1''-(benzene-1,3,5-	DMF	None / 10 ⁻⁵ M	Inorg. Chem. 2013, 52 , 2799

triyl)tripiperidine-4-carboxylic acid

10	MIL-53(Al) (BDC =1,4-benzenedicarboxylic acid)	aqueous solution	None / 0.9×10 ⁻⁶ M	Anal. Chem. 2013, 85 , 7441
11	$Eu(C_{33}H_{24}O_{12})(H_2NMe)(H_2O)$	HEPES aqueous	None / 10 ⁻⁴ M	<i>J. Mater. Chem.</i> 2012, 22 , 16920
12	$Eu(acac)_{3} \subset Zn(C_{15}H_{12}NO_{2})_{2}$	CH ₂ Cl ₂ / MeOH	None / 5×10 ⁻³ M	<i>Chem. Commun.</i> 2011, 47 , 10731
13	[Cu(tpp)•H ₂ O] _{2n} [Htpp = 1-(4-tetrazol-5"-yl)benzyl-3 - (pyraziny-l)pyrazole]	aqueous suspension	$4.6 \times 10^4 / 10^{-5} M$	This work

Table S3 Selected bond lengths [Å] and angles $[\circ]$ for 1.

Bond length	(Å)	Bond angle	(°)
Cu(1)-N(3)	1.976(4)	N(3)-Cu(1)-N(8)	111.62(14)
Cu(1)-N(8)	2.028(4)	N(3)-Cu(1)-N(6)	124.47(15)
Cu(1)-N(6)	2.076(4)	N(8)-Cu(1)-N(6)	107.32(15)
Cu(1)-N(4)	2.130(4)	N(3)-Cu(1)-N(4)	120.93(15)
Cu(2)-N(10)	2.005(4)	N(8)-Cu(1)-N(4)	109.28(14)
Cu(2)-N(16)	2.009(4)	N(6)-Cu(1)-N(4)	78.90(14)
Cu(2)-N(12)	2.088(4)	N(10)-Cu(2)-N(16)	110.79(15)
Cu(2)-N(14)	2.116(3)	N(10)-Cu(2)-N(12)	115.89(15)
		N(16)-Cu(2)-N(12)	113.66(16)
		N(10)-Cu(2)-N(14)	117.27(15)
		N(16)-Cu(2)-N(14)	117.16(15)
		N(12)-Cu(2)-N(14)	78.81(14)

 Table S4 Standard deviation calculation and detection limit calculation.

Text 1 Fluorescence intensity	5842.45 a.u.
Text 2 Fluorescence intensity	5842.02 a.u.
Text 3 Fluorescence intensity	5841.25 a.u.
Text 4 Fluorescence intensity	5841.88 a.u.
Text 5 Fluorescence intensity	5842.11 a.u.
Standard Deviation (σ)	0.4402
Slope (m)	1568.14

Detection limit $(3\sigma/m)$	0.0842 vol%

Fig. S1 The 1D chain structure of 1.

Fig.S2 The IR spectra of 1.

Fig.S3 The PXRD patterns of 1.

Fig.S4 The TGA curves of compounds 1.

Fig.S5 (a) Fluorescence intensity of compound 1 in different metal ion; (b) Results of the competition experiments between Fe^{3+} and selected other metal ions.

Fig.S6 Fluorescence intensity of compound 1 at 597 nm in different concentrations aqueous solutions of Fe^{3+} (in the range of approximately $10^{-6}-10^{-2}$ mol/L).