Supplementary information

Catalyst Free Decarboxylative Trichloromethylation of Aldimines

Eloah P. Ávila ^[a], Isabella F. de Souza ^[a], Alline V. B. Oliveira ^[b], Vinicius Kartnaller

^[b], João Cajaiba ^[b], Rodrigo O. M. A. de Souza ^[b], Charlane C. Correa ^[a], and Giovanni

W. Amarante [a]*

^aDepartamento de Química, Universidade Federal de Juiz de Fora, CEP: 36036-900, Juiz de

Fora, MG, Brasil

^bInstituto de Química, Universidade Federal do Rio de Janeiro, CEP: 22041-909, Rio de Janeiro, RJ, Brasil

*Corresponding Author: giovanni.amarante@ufjf.edu.br

Summary

EXPERIMENTAL SECTION
1. General Procedures2
2. 1. General procedure for the preparation of N-sulfonyl aldimines Characterization data for the inedited sulfonylimines (1h and 1i)
3. General procedure and characterization data for the trichloromethyl sulfonamides (3a-o)3
4. General procedure and characterization data for the chiral trichloromethyl sulfinimide (5)
5. ¹ H and ¹³ C NMR spectra of trichloromethyl sulfonamide and sulfinamide derivatives11
6. Single crystal X-ray diffraction

EXPERIMENTAL SECTION

1. General Procedures. Unless otherwise noted, all reagents were obtained commercially and used without further purification. Unless otherwise noted, all reaction mixtures were carried out in flame-dried glassware under nitrogen atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated glassbacked TLC plates (silica gel 60 F254) and visualized by UV lamp (254 nm). Yields refer to chromatographically purified and spectroscopically pure compounds, unless stated otherwise. ¹H and ¹³C spectra were recorded on a Bruker DPX-500 and DRX 300 spectrometer. Chemical shifts are reported in ppm. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) and ¹³C NMR spectra were referenced to CDCl₃ (77.0 ppm). All ¹³C spectra were measured with complete proton decoupling. Peak multiplicities are designated by the following abbreviations: s, singlet; d, doublet; dd, double doublet; t, triplet; m, multiplet; and J, coupling constant in Hz. High Resolution Mass Spectra (HRMS) were recorded on a Xevo G2-S Q-Tof spectrometer. Infrared experiments were acquired on a ReactIR 45m (Mettler Toledo). EasyMax 102 (Mettler Toledo). Microwave experimentals were performed on Anton Paar Monowave 300 and Microwave reactor CEM Discovery.

2. 1. General procedure for the preparation of *N*-sulfonyl aldimines Characterization data for the inedited sulfonylimines (1h and 1i)

A mixture of aromatic aldehyde (5.0 mmol), metanosulfonamide (5.0 mmol) and tetraethylortosilicate (5.25 mmol) was stirred and heated at 120 °C for 6-8 h. After completion of reaction (monitored by TLC) the crude reaction mixture was cooled, then solubilized with dichloromethane and washed with water (2:1). The organic phases were combined and concentrated under reduced pressure and the solid was recrystallized with

a mixture of hexanes/ethyl acetate. The resulting solid was collected by filtration and then dried in vacuum. The yields for the formation of *N*-sulfonyl imines ranging from 32% to 77%.

(E)-N-(3,4,5-

trimethoxybenzylidene)methanesulfonamide: The imine **1h** was obtained as a crystal colorless solid (887.3 mg, 65%). ¹H NMR (300 MHz, CDCl₃) δ: 8.91 (s, 1H),

7.21 (s, 2H), 3.97 (s, 3H), 3.93 (s, 6H), 3.14 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ: 171.2, 153.6, 144.4, 127.0, 108.5, 61.2, 56.4, 40.4. HRMS: calcd for [C₁₁H₁₅NO₅S]+ ([M+Na]+): *m/z* 296.0569, found 296.0572.

(E)-N-(benzo[d][1,3]dioxol-5-

ylmethylene)methanesulfonamide: The product 1i was obtained as a crystal solid (887.3 mg, 68 %). ¹H NMR (300 MHz, CDCl₃) δ: 8.87 (s, 1H), 7.48 (s, 1H), 7.44 (d,

1H, J = 8.0 Hz), 6.93 (d, 1H, J = 8.0 Hz), 6.11 (s, 2H), 3.11 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 170.4, 154.0, 148.9, 130.8, 126.9, 108.7, 107.9, 102.4, 40.4. HRMS: calcd for [C₉H₉NO₄S]+ ([M+Na]+): *m/z* 250.0150, found 250.0157.

3. General procedure and characterization data for the trichloromethyl sulfonamides (3a-o)

To a solution of imine (0.5 mmol) in DMSO (0.7 mmol.mL⁻¹) was added potassium trichloroacetate salt (302.3 mg, 1.5 mmol) and stirred at room temperature for 40 minutes. After completion, it was added dichloromethane (5 mL) and the solution was extracted with water (4 x 10 mL). The aqueous phases was extracted with AcOEt (2 x 20 mL). The volatiles was dried with anhydrous sodium sulfate and evaporated under reduced pressure. The product was obtained after purification through chromatography column (elution: ethyl acetate/ hexanes, 3:1).

N-(2,2,2-trichloro-1-(4-

chlorophenyl)ethyl)methanesulfonamide: The product **3a** was obtained as a white solid (138.2 mg, 82%). ¹H NMR (300 MHz, CDCl₃) δ : 7.50 (d, 2H, J = 8.5 Hz), 7.42 (d,

2H) J = 8.5 Hz), 5.85 (d, 1H, J = 8.9 Hz), 5.26 (d, 1H, J = 8.9 Hz), 2.89 (s, 3H). ¹³C NMR (75 MHz) δ : 136.0, 133.2, 130.5, 128.9, 100.3, 71.2, 42.5. IR (KBr, cm⁻¹): 3262, 2972, 1503, 1442, 780, 712. HRMS: calcd for [C₉H₉Cl₄NO₂S]+ ([M+Na]+): *m/z* 357.90060, found 357.89980.

N-(2,2,2-trichloro-1-(4-

bromophenyl)ethyl)methanesulfonamide: The product **3b** was obtained as a white solid (135.4 mg, 71%). ¹H NMR (300 MHz, CDCl₃) δ : 7.59 (d, 2H, J = 8.5 Hz), 7.43 (d, 2H,

J = 8.5 Hz), 5.74 (d, 1H, *J* = 9.2 Hz), 5.25 (d, 1H, *J* = 9.2 Hz), 2.89 (s, 3H). ¹³C NMR (75 MHz) δ: 133.7, 131.8, 130.7, 124.2, 100.1, 71.2, 42.5. IR (KBr, cm⁻¹): 3271, 2969,

1581, 1494, 824, 787. HRMS: calcd for [C₉H₉BrCl₃NO₂]+ ([M+Na]+): *m/z* 401.8501, found 401.84930.

N-(2,2,2-trichloro-1-(4-

fluorophenyl)ethyl)methanesulfonamide: The product 3c was obtained as an yellow oil (110.6 mg, 69%). ¹H NMR (300 MHz, CDCl₃) δ : 7.58 (dd, J = 8.60, 5.2 Hz, 2H), 7.10

(t, J = 8.60 Hz, 2H), 6.91 (d, 1H, J = 10.1 Hz), 5.25 (d, 1H, J = 10.1 Hz), 2.80 (s, 3H); ¹³C NMR (75 MHz) δ : 163.3 (d, 1F, J = 248.5 Hz), 131.3 (d, 1F, J = 8.2 Hz), 130.6 (d, 1F, J = 3.2 Hz) 115.6 (d, 1F, J = 21,8 Hz), 100.8, 71.2, 42.2. IR (KBr, cm⁻¹): 3265, 2982, 1577, 1491, 832. HRMS: calcd for [C₉H₉Cl₃FNO₂S]+ ([M+Na]+): m/z 341.9301, found 341.9297.

4-methyl-N-(2,2,2-trichloro-1-(3-

chlorophenyl)ethyl)benzenesulfonamide: The product 3d was obtained as a white solid (89.3 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ : 7.54 (d, 2H, J = 8.4 Hz), 7.26-7.23 (m, 2H), 7.19 (d, 1H, J = 7.8

Hz), 7.16 (t, 1H, J = 1.8 Hz), 7.12 (d, 2H, J = 8.4 Hz), 5.72 (d, 1H, J = 9.4 Hz), 5.08 (d, 1H, J = 9.4 Hz), 2.37 (s, 3H). ¹³C NMR (125 MHz) δ : 144.0, 136.4, 135.7, 134.0, 129.43, 129.42, 129.3, 129.2, 127.5, 127.0, 99.8, 71.3, 53.4. IR (KBr, cm⁻¹): 3259, 2964, 1593, 1440, 755, 720. HRMS calcd for [C₁₅H₁₃Cl₄NO₂S]+ ([M+Na]+): *m/z* 433.9319, found 433.9321.

N-(2,2,2-trichloro-1-(2-

chlorophenyl)ethyl)methanesulfonamide: The product **3e** was obtained as yellow oil (87.6 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ : 7.73 (t, 1H, J = 4,5 Hz), 7.51-7.49

(m, 1H); 7.40-7.38 (m, 2H); 6.06 (d, 1H, J = 10.0 Hz), 5.98 (d, 1H, J = 10.0 Hz), 2.88 (s, 3H). ¹³C NMR (125 Hz) δ : 135.4, 133.5, 130.8, 130.1, 128.4, 127.4, 100.5, 66.4, 42.1. IR (KBr, cm⁻¹): 3253, 2969, 1581, 1469, 1442, 776, 760, 725. HRMS: calcd for [C₉H₉Cl₄NO₂S]+ ([M+Na]+): *m/z* 357.90060, found 357.90052.

N-(2,2,2-trichloro-1-(p-

tolyl)ethyl)methanesulfonamide: The product 3f was obtained as a white solid (113.9 mg, 72%). ¹H NMR (300 MHz, CDCl₃) δ : 7.44 (d, 2H, J = 8.0 Hz), 7.24 (d, 2H, J

=8.0 Hz), 6.08 (d,1H, J = 9.8 Hz), 5.23 (d, 1H, J = 9.9 Hz), 2.79 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz) δ : 139.9, 131.6, 129.3, 129.1, 100.9, 71.6, 42.2, 21.3. IR (KBr, cm⁻¹): 3279, 2961, 2909, 1529, 1451, 1327, 1164, 759, 721. HRMS: calcd for [C₁₀H₁₂Cl₃NO₂S]+ ([M+Na]+): *m/z* 337.95520, found 337.95405.

N-(2,2,2-trichloro-1-(4-

methoxyphenyl)ethyl)methanesulfonamide: The product **3g** was obtained as a white solid (128.0 mg, 77%). ¹H NMR (300 MHz, CDCl₃) δ : 7.49 (d, 2H, J = 9.0 Hz), 6,94 (d, 2H,

J = 9.0 Hz), 6.30 (d, 1H, J = 10.2 Hz), 5.21 (d, J = 10.2 Hz, 1H), 3.84 (s, 3H), 2,79 (s,

3H). ¹³C NMR (75 MHz) δ: 160.5, 130.5, 126.4, 114.0, 101.2, 71.4, 55.3, 42.2. IR (KBr, cm⁻¹): 3248, 3012, 2951, 1607, 1567, 1294, 1135, 811, 753, 717. HRMS: calcd for [C₁₀H₁₂Cl₃NO₃S]+([M+Na]+): *m/z* 353.9485, found 353.9496.

N-(2,2,2-trichloro-1-(3,4,5-

trimethoxyphenyl)ethyl)methanesulfonamide: The product **3h** was obtained as a white solid (166.8 mg, 85%). ¹H NMR (300 MHz, CDCl₃) δ: 6.85-6,82 (m, 2H),

5.15 (d, 1H, *J* = 10.2Hz), 3.89 (s, 3H), 8.88 (s, 3H), 2.79 (s, 3H), 2.67 (s, 3H) . ¹³C NMR (75 MHz) δ: 153.1, 139.1, 129.9, 106.8, 101.0, 72.1, 60.9, 56.4, 42.1. IR (KBr, cm⁻¹): 3257, 1576, 1503, 1459, 1419, 816, 790. **HRMS:** calcd for [C₁₂H₁₇Cl₃NO₅S]+([M+H]+): *m/z* 391.9893, found 391.9884.

N-(1-(benzo[d][1,3]dioxol-5-yl)-2,2,2-

trichloroethyl)methanesulfonamide: The product 3i was obtained as yellow oil (114.3 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ : 7.06-7.01 (m, 2H); 6.85 (d, 1H, J = 8.0

Hz), 6.10 (d, 1H, J = 9.8Hz), 6.04 (s, 2H), 5.18 (d, 1H, J = 9.8 Hz), 2.86 (s, 3H). ¹³C NMR (75 MHz) δ : 148.8, 147.9, 128.2, 123.7, 109.0, 108.2, 101.6, 100.9, 71.6, 42.3. IR (KBr, cm⁻¹): 3253, 2934, 2891, 1503, 1452, 1253, 1149, 766, 730. HRMS: calcd for [C₁₀H₁₀Cl₃NO₄S]+ ([M+Na]+): m/z 367.92940, found 367.92819.

(E)-N-(1,1,1-trichloro-4-phenylbut-3-en-2-

yl)methanesulfonamide: The product **3j** was obtained as yellow oil (95.3 mg, 58%). ¹H NMR (300 MHz, CDCl₃) δ : 7.47-7.45 (m, 2H), 7.40-7.33 (m, 3H); 6.90 (d, 1H, *J* = 15.9

Hz), 6.38 (dd, 1H, J = 15.9, J = 7.1 Hz), 5.73 (d, J = 9.1 Hz, 1H), 4.89 (dd, 1H, J = 9.1, J = 7.1 Hz), 3.12 (s, 3H); ¹³C NMR (75 MHz) δ : 137.5, 135.2, 129.0, 128.8, 127.0, 122.0, 101.2, 70.9, 42.8. IR (KBr, cm⁻¹): 3253, 2846, 1520, 1442, 758, 721. HRMS: calcd for [C₁₁H₁₂Cl₃NO₂S]+ ([M+Na]+): m/z 349.95570, found 349.95465.

N-(2,2,2-trichloro-1-(furan-2-

yl)ethyl)methanesulfonamide: The product 3k was obtained as a brown oil (83.3 mg, 57%). ¹H NMR (300 MHz, CDCl₃) δ : 7.51-7.50 (m, 1H), 6.64 (d, 1H, J = 3.1

Hz), 6.45 (dd, 1H, J = 3.1 Hz, J = 1.9 Hz), 5.71 (d, 1H J = 10.2 Hz), 5.36 (d, 1H, J = 10.2 Hz), 2.94 (s, 3H). ¹³C NMR (75 MHz) δ : 147.1, 143.8, 112.2, 111.2, 99.7, 66.5, 42.3. IR (KBr, cm⁻¹): 3253, 2926, 2849, 1520, 1442, 1331, 1154, 750, 729. HRMS: calcd for [C₇H₈Cl₃NO₃S]+ ([M+Na]+): *m/z* 313.9188, found 313.9190.

N-(2,2,2-trichloro-1-phenylethyl) methanesul fon a mide:

The product **31** was obtained as a white solid (131.6 mg,

87%). ¹H NMR (300 MHz, CDCl₃) δ: 7.59-7.56 (m, 2H),

7.45-7.44 (m, 3H), 6.26 (d, 1H, *J* = 10.2 Hz,), 5.27 (d, 1H, *J* = 10.2 Hz), 2.80 (s, 3H); ¹³C NMR (75 MHz) δ: 134.7, 129.9, 129.4, 128.8, 100.9, 72.0, 42.4. IR (KBr, cm⁻¹): 3297,

2969, 2944, 1503, 1460, 1339, 872, 787, 749. HRMS: calcd for [C₉H₁₀Cl₃NO₂S]+ ([M+Na]+): *m/z* 323.93960, found 323.93855.

N-(2,2,2-trichloro-1-(4-

(trifluoromethyl)phenyl)ethyl)methanesulfonamide: The product **3m** was obtained as a white solid yellow oil

(144.4 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ : 7.71 (s,

4H); 5.91 (d, *J* = 9.3 Hz, 1H), 5.36 (d, *J* = 9.3 Hz, 1H), 2.93 (s, 3H).¹³C NMR (125 MHz) δ: 138.6, 131.7 (q, *J* = 32.5 Hz), 129.7, 126.9, 125.6 (q, *J* = 270 Hz), 100.0, 71.3, 42.6. IR (KBr, cm⁻¹): 3279, 2969, 1641, 1460, 1321, 1174, 871, 817, 737, 619. HRMS: calcd for [C₁₀H₉Cl₃F₃NO₂S]+ ([M+Na]+): *m/z* 391.9269, found 391.9272.

N-(2,2,2-trichloro-1-(4-

nitrophenyl)ethyl)methanesulfonamide: The product 3n was obtained as a yellow oil (147.7 mg, 85%); ¹H NMR (500 MHz, CDCl₃) δ : 8.31 (d, 2H, J = 8.5 Hz), 7.78 (d, 2H,

J = 8.5 Hz); 5.85 (d, 1H, J = 9.5 Hz), 5.42 (d, 1H, J = 9.5 Hz), 3.00 (s, 3H); ¹³C NMR (125 MHz) δ : 148.6, 141.6, 130.4, 123.7, 99.5, 71.0, 42.6. IR (KBr, cm⁻¹): 3230, 3009, 2932, 1598, 1529, 1316, 992, 776, 739. HRMS: calcd for [C₉H₉Cl₃N₂O₄S]+ ([M+Na]+): *m/z* 368.9246, found 368.9249.

4-methyl-N-(1,1,1-trichloro-3-methylbutan-2yl)benzenesulfonamide: The product 30 was obtained as a white solid (56.4 mg, 42%); ¹H NMR (500 MHz, CDCl₃) δ : 7.81 (d, 2H, *J* = 8.2 Hz); 7.31 (d, 2H, *J* = 8.2 Hz), 4.96 (d, 1H *J* = 10.3 Hz), 4.11 (dd, 1H, *J* = 10.3 Hz, *J* = 2.0 Hz), 2.66-2.60 (m, 1H), 2.44 (s, 3H), 1.09 (d, 3H, *J* = 6.8 Hz), 1.03 (d, 3H, *J* = 6.8 Hz). ¹³C NMR (125 MHz) δ : 143.6, 138.3, 129.5, 127.2, 102.4, 72.8, 29.9, 22.9, 21.5, 17.2. IR (KBr, cm⁻¹): 3199, 1452, 1312, 721. HRMS: calcd for [C₁₂H₁₆Cl₃NO₂S]+ ([M+Na]+): *m/z* 365.9865, found 365.9875.

4. General procedure and characterization data for the chiral trichloromethyl sulfinimide (5)

To a solution of imine (50.8 mg, 0.2 mmol) in DMSO d6 (0.7 mmol.mL⁻¹) was added potassium trichloroacetate salt (161.2 mg, 0.8 mmol) and stirred at room temperature for 40 minutes. After completion, it was added dichloromethane (5 mL) and the solution was extracted with water (4 x 10 mL). The aqueous phases was extracted with AcOEt (2 x 20 mL). The volatiles was dried with anhydrous sodium sulfate and evaporated under reduced pressure. The product was obtained after purification through chromatography column (elution: ethyl acetate/ hexanes, 3:1).

(R)-2-methyl-N-(2,2,2-trichloro-1-(4nitrophenyl)ethyl)propane-2-sulfinamide The product 5 was obtained as a white solid (56.4 mg, 75%). ¹H NMR (200 MHz, CDCl₃) δ: 8.28 (d, 2H, J =

8.0 Hz); 7.76 (d, 2H, J = 8.0 Hz), 5,16 (d, 1H, J = 8.9 Hz), 4.25 (d, 1H, J = 8.9 Hz), 1.31

(s, 9H). ¹³C NMR (50 MHz) δ: 148.5, 143.0, 130.3, 123.8, 101.3, 74.1, 57.9, 22.7. HRMS: calcd for [C₁₂H₁₆Cl₃N₂O₃S]+ ([M+H]+): *m/z* 372.9947, found 372.9933.

5. ¹H and ¹³C NMR spectra of trichloromethyl sulfonamide and sulfinamide derivatives

¹H NMR spectrum of **3a** (300 MHz, CDCl₃)

¹H NMR spectrum of **3c** (300 MHz, CDCl₃)

¹H NMR spectrum of **3e** (500 MHz, CDCl₃)

ppm

¹³C NMR spectrum of **3e** (125 MHz, CDCl₃)

¹H NMR spectrum of **3g** (300 MHz, CDCl₃)

¹H NMR spectrum of **3h** (300 MHz, CDCl₃)

¹H NMR spectrum of **3m** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (75 MHz, CDCl₃)

¹H NMR spectrum of **3n** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (125 MHz, CDCl₃)

¹H NMR spectrum of **5** (200 MHz, CDCl₃)

DEPT135 of 5

6. Single crystal X-ray diffraction

Single crystal X-ray data were collected using an Oxford Gemini A. Ultradiffractometer with Mo-K α line ($\lambda = 0.71073$ Å) at temperature of 150 K. For data collection, reduction and refinement of the unit cells, the program CrysAlis RED, Oxford diffraction Ltd – version 1.171.32.38 [1] was used. The structure was solved and refined through the SHELX-2013 program [2]. The absorption correction *multiscan* was used [3]. Additionally, anisotropic displacement parameters were assigned to all nonhydrogen atoms. Hydrogen atoms were located from Fourier maps and the parameters of isotropic displacement were refined or fixed. The structures were designed using the following programs: ORTEP-3 for Windows [4] and Mercury 3.5.1

[5, 6]. The sample characteristics, data collection and refinement parameters for representative temperature measurements are listed in Tab. 1.

Formula	$\underline{C}_{10}\underline{H}_{10}\underline{Cl}_{3}\underline{NO}_{4}\underline{S}$
Formula weight/g mol ⁻¹	346.60
Temperature/K	150
Crystal system	Triclinic
Space group	P-1
a/Å	<u>6.9570 (6)</u>
b/Å	<u>9.0926 (10)</u>
c/Å	<u>12.0788 (12)</u>
α/°	<u>110.282 (9)</u>
β/°	100.464 (7)
γ/°	96.922 (8)
V/Å ³	<u>690.69 (13)</u>
Ζ	2
Crystal size/mm	$\underline{0.45} \times \underline{0.41} \times \underline{0.17}$
$D_{calc}/g \text{ cm}^{-3}$	<u>1.667</u>
μ(Mo Kα)/cm ⁻¹	0.82
Transmission factors (min/max)	<u>0.883</u> / <u>0.950</u>
Reflections measured/unique	<u>5866</u> / <u>2829</u>
Observed reflections	2122
N°. of parameters refined	177
$R[F_0>2\sigma(F_0)]$	<u>0.040</u>
$wR[F_0 2 > 2\sigma (F_0)^2]$	0.085
S	<u>1.03</u>
RMS peak/	0.089

 Table 1: Crystal data of compound.

Table 2: Selection of the main geometric parameters, bond distance (Å), bond angles (°)

 torsion (°) and hydrogen bonds (Å and °).

Cl2—C9	1.775 (3)	01—C1	1.425 (4)
S1—O4	1.426 (2)	N1—C8	1.457 (3)
S1—O6	1.442 (2)	C8—C5	1.512 (4)
S1—N1	1.615 (2)	С8—С9	1.554 (3)
S1—C10	1.752 (3)	C4—C2	1.371 (4)
Cl1—C9	1.765 (3)	C4—C5	1.411 (4)
Cl3—C9	1.787 (3)	С5—С6	1.382 (4)
O2—C3	1.393 (3)	C2—C3	1.374 (4)
O2—C1	1.408 (4)	C3—C7	1.363 (4)

O1—C2	1.381 (3)	C6—C7		1.401 (4)
$Cl1\cdots O4^{i}$	3.172 (2)	$06 \cdots S1^{ii}$		3.497 (2)
Cl1…N1	3.034 (2)	$O6 \cdots N1^{ii}$		2.891 (3)
Cl3…N1	3.026 (2)			
O4—S1—O6	119.40 (11)	C8—C9—Cl1		111.53 (18)
O4—S1—N1	108.01 (12)	C8—C9—Cl2		109.88 (19)
O6—S1—N1	105.33 (12)	Cl1—C9—Cl2		109.17 (13)
O4—S1—C10	108.99 (14)	C8—C9—Cl3		109.60 (16)
O6—S1—C10	106.70 (13)	Cl1—C9—Cl3		108.75 (15)
N1—S1—C10	107.89 (13)	Cl2—C9—Cl3		107.82 (14)
C3—O2—C1	104.8 (2)	C4—C2—C3		122.7 (3)
C2—O1—C1	105.0 (3)	C4—C2—O1		127.2 (3)
C8—N1—S1	123.2 (2)	C3—C2—O1		110.0 (2)
N1—C8—C5	114.0 (2)	С7—С3—С2		122.1 (3)
N1—C8—C9	107.0 (2)	С7—С3—О2		127.8 (3)
С5—С8—С9	113.47 (18)	C2—C3—O2		110.1 (3)
C2—C4—C5	116.4 (3)	С5—С6—С7		122.2 (3)
C6—C5—C4	120.2 (2)	O2—C1—O1		110.2 (3)
C6—C5—C8	118.9 (2)	С3—С7—С6		116.3 (3)
C4—C5—C8	120.9 (2)			
O4—S1—N1—C8	-31.1 (3)	N1—C8—C9—	C11	59.4 (2)
O6—S1—N1—C8	-159.7 (2)	N1—C8—C9—	C12	-179.42 (16)
S1—N1—C8—C5	-109.3 (2)	N1-C8-C9-	C13	-61.1 (2)
S1—N1—C8—C9	124.5 (2)	C5—C8—C9—(C11	-67.2 (2)
C4—C5—C8—N1	-41.7 (3)	С5—С8—С9—(C12	54.0 (2)
C6—C5—C8—N1	139.9 (2)	С5—С8—С9—(C13	172.31 (16)
D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> 1····O6 ⁱⁱ	0.78 (3)	2.16 (2)	2.891 (3)	157 (2)
C1—H1 <i>B</i> …O6 ⁱⁱⁱ	0.97	2.46	3.296 (5)	145
C4— $H4$ ···O4 ⁱ	0.93	2.55	3.321 (4)	140
С8—Н8…О4	0.98	2.44	2.939 (3)	111
C10—H10 <i>C</i> ····O2 ^{iv}	0.96	2.57	3.389 (4)	144

Symmetry codes: (i) x+1, y, z; (ii) -x, -y-1, -z+1; (iii) x+1, y+1, z; (iv) -x, -y, -z+1.

References:

- [1] O. Diffraction, CrysAlis PRO. Oxford Diffraction Ltd, (2010).
- [2] T. Gruene, H.W. Hahn, A. V. Luebben, F. Meilleur, G.M. Sheldrick, Refinement of macromolecular structures against neutron data with SHELXL2013, in: J.
- Appl. Crystallogr. 747 (2014) 462–466.
- [3] R.H. Blessing, Acta Crystallogr. A. 51 (1995) 33-38.
- [4] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
- [5] I.R. Thomas, I.J. Bruno, J.C. Cole, C.F. MacRae, E. Pidcock, P.A. Wood, J.
- Appl. Crystallogr. 43 (2010) 362–366.
- [6] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor,

M. Towler, J. Van De Streek, J. Appl. Crystallogr. 39 (2006) 453-457.

Appendix A. Supplementary data

All crystallographic data for structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center. Copies of this data (CCDC 1505456) may be obtained free of change upon application to CCDC, 12, Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).

