Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

The supporting information

Enhanced Charge Storage of Li₃FeF₆ with Carbon Nanotubes for

Lithium-Ion Batteries

Yueli Shi^{a,b}, Shubin Sun^a, Jingjing Liu^a, Yongli Cui^a, Quanchao Zhuang^{a*}, Xiaobo

Chen^b*

^a Lithium-ion Batteries Laboratory, School of Materials Science and Engineering, China University of Materials

^b Department of Chemistry, University of Missouri – Kansas City (UMKC) Kansas

City, MO 64110, USA

Fig. S1-S8

Table. S1-S3

To whom correspondence should be addressed.

^a Lithium-ion Batteries Laboratory, School of Materials Science and Engineering, China University of Mining and technology, Xuzhou 221116, China.Quanchao Zhuang,Tel: +8613605215324, E-mail: zhuangquanchao@126.com,Fax: +86 516 83591870

^{b.} Department of Chemistry, University of Missouri – Kansas City (UMKC) Kansas City, MO 64110, USA.Xiaobo Chen, Tel: 816-235-6420, Email: Email: chenxiaobo@umkc.edu.

Fig. S1. Charge-discharge profiles of Li_3FeF_6/C cathode obtained by milling for 3 h at the current density of 14 mA g⁻¹ under the potential range of 4.5~2.0 V

Fig. S2. Charge-discharge profiles of Li_3FeF_6/C cathode obtained by milling for 5 h at the current density of 14 mA g⁻¹ under the potential range of 4.5~2.0 V

Fig. S3. Charge-discharge profiles of Li_3FeF_6/C cathode obtained by milling for 7 h at the current density of 14 mA g⁻¹ under the potential range of 4.5~2.0 V

Fig. S4. The capacity-cycle profiles of Li_3FeF_6/C cathode obtained by milling at different times for 3 h, 5 h and 7 h, at the current density of 14 mA g⁻¹ under the potential range of 4.5~2.0 V

Fig. S5. Comparisons of EIS of Li₃FeF₆/C cathode experimental data recorded at 2.9 V during discharge process with the simulation result obtained from the proposed equivalent circuit

Fig. S6. Comparisons of EIS of Li₃FeF₆/CNTs cathode experimental data recorded at 2.9 V during discharge process with the simulation result obtained from the proposed equivalent circuit

Fig. S7. Comparisons of EIS of Li₃FeF₆/C cathode experimental data recorded at 3.1 V during charge process with the simulation result obtained from the proposed equivalent circuit

Fig. S8. Comparisons of EIS of Li₃FeF₆/CNTs cathode experimental data recorded at 3.1 V during charge process with the simulation result obtained from the proposed equivalent circuit

Table S1
The comparison of the LIBs performance in the manuscript with related research.

	Electrode	Current	Maximum	Cycles	Capacity
Reporter	composition	(mA g ⁻¹)	capacity		retention
	(wt%)		(mA h g ⁻¹)		(%)
The	$Li_3FeF_{6:}84$	14(C/10)	120	50	83
manuscript	CNTs: 1				
	Binder: 15				
G. Lieser <i>et</i>	Li₃FeF ₆ : 72	7(C/20)	128	100	47
al.	C: 25				
	binder: 3				
A. Basa <i>et al</i> .	Li₃FeF ₆ : 72	7.8(C/18)	140	30	85
	C: 25				
	binder: 3				

Table S2

Equivalent circuit parameters of $\rm Li_3FeF_6/C$ and $\rm Li_3FeF_6/CNTs$ cathode at 2.9 V in the discharge process .

	Li₃FeF ₆ /C		Li₃FeF ₆ /CNTs		
parameters	value	Uncertainty (%)	value	Uncertainty (%)	
<i>R</i> _s (Ω)	22.54	0.32164	19.61	0.76145	
<i>R</i> _{SEI} (Ω)	3.939	10.318	3.9	10.099	
<i>Q_{sEl}</i> – n	1.4478×10 ⁻⁶	14.629	4.8253×10 ⁻⁵	14.315	
$Q_{\rm SEI} - Y_0$	1.032	3.5135	0.059305	7.9561	
$R_{ct}(\Omega)$	20.12	2.9232	9.205	2.2128	
$Q_{\rm ct}$ – n	1.6137×10 ⁻⁴	9.1194	8.1569×10 ⁻⁴	9.1795	
$Q_{\rm ct} - Y_0$	0.68284	2.2607	0.57871	2.1588	
$R_D(\Omega)$	1398	5.5611	1657	2.8228	
<i>Q</i> _D −n	158	9.0924	108.2	4.5205	
Q_D -Y ₀	0.64799	0.32931	0.71588	0.45348	

Table S3
Equivalent circuit parameters of Li_3FeF_6/C and $Li_3FeF_6/CNTs$ cathode at 3.1 V in the charge
process.

	Li ₃ FeF ₆ /C		Li ₃ FeF ₆ /CNTs		
parameters	value	Uncertainty (%)	value	Uncertainty (%)	
<i>R</i> _s (Ω)	21.7	0.39569	22.33	0.34665	
<i>R</i> _{SEI} (Ω)	6.574	6.9597	3.434	3.6034	
<i>Q_{SEI}</i> – n	2.2386×10 ⁻⁶	14.922	6.2463×10 ⁻⁷	14.669	
$Q_{\rm SEI} - Y_0$	0.97191	2.6469	1.058	2.3672	
$R_{ct}(\Omega)$	27.05	2.1553	9.324	2.3292	
$Q_{\rm ct}$ – n	7.2796×10⁻⁵	6.8645	7.5269×10 ⁻⁴	10.282	
$Q_{\rm ct} - Y_0$	0.75932	1.5485	0.57374	2.3307	
$R_D(\Omega)$	1572	2.6303	2844	7.9058	
<i>Q</i> _D −n	138.4	4.1897	204.9	10.603	
Q_D -Y ₀	0.6839	0.25071	0.7681	0.35093	

References

- G. Lieser, M. Schroeder, H. Geßwein, V. Winkler, S. Glatthaar, M. Yavuz, R. Binder, J. Sol-Gel Sci Technol, 2014, 71, 50–59.
- 2 A. Basa, E. Gonzalo, A. Kuhn, F. Alvarado, J. Power Sources, 2012, 197, 260–266.