Electronic Supplementary Information (ESI): Li/Ag₂VO₂PO₄ Batteries: The Roles of Composite Electrode Constituents on Electrochemistry

David C. Bock^a, Andrea M. Bruck^b, Christopher J. Pelliccione^a, Yiman Zhang^b, Kenneth J. Takeuchi^{b, c}, Amy C. Marschilok^{b, c}, and Esther S. Takeuchi^{a, b, c}

^a Brookhaven National Laboratory, Upton, NY 11973, USA

^b Department of Chemistry, Stony Brook University, Stony Brook, NY 11790, USA.

^c Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11790, USA

Figure S1. Crystal Structure of Ag₂VO₂PO₄.

Figure S2. Differential Scanning Calorimetry of synthesized Ag₂VO₂PO₄.

Figure S3. Constant current discharge of an Ag₂VO₂PO₄ electrode at C/500 rate.

				R_1		R_2		R_3		Wo ₁ -R		Wo ₁ -T		Wo_1 -P
Cathode Type	# e	Chi-Sqr	R ₁	(Error)	R ₂	(Error)	R ₃	(Error)	Wo ₁ -R	(Error)	Wo ₁ -T	(Error)	Wo_1 -P	(Error)
Ag ₂ VO ₂ PO ₄	0	0.00143	5.69	0.049	24.06	1.13	5.35E+05	4790	200	N/A	100	N/A	0.35	N/A
Ag ₂ VO ₂ PO ₄	0.08	0.0008	4.337	0.026	47.95	1.05	155.3	1.88	155.3	1.88	126.1	7.2	0.4	0.003
$Ag_2VO_2PO_4$	0.2	0.000144	3.606	0.012	15.78	0.21	22.52	0.5099	121.1	1.9	40.9	1.2	0.33	0.0014
Ag ₂ VO ₂ PO ₄	0.5	0.00133	2.096	0.016	11.93	0.555	8.203	1.14	47.34	2.462	37.65	3.5	0.352	0.004
$Ag_2VO_2PO_4 + PTFE$	0	0.0026	4.96	0.053	24.85	1.99	5.43E+05	7403	200	N/A	100	N/A	0.35	N/A
$Ag_2VO_2PO_4 + PTFE$	0.08	0.0001	6.78	0.015	36.48	1.48	189.1	1.991	435.7	5.9117	90.77	1.855	0.4066	0.002
$Ag_2VO_2PO_4 + PTFE$	0.2	0.000573	5.125	0.026	25.58	4.37	42.29	4.126	100.5	2.726	40.51	1.582	0.411	0.002
$Ag_2VO_2PO_4 + PTFE$	0.5	0.00045	4.569	0.028	19.83	2.4805	28.06	2.2791	89.52	2.3138	94.75	3.777	0.3948	0.00367
$Ag_2VO_2PO_4 + PTFE + C$	0	0.0067	1.908	0.0566	42	0.34	8017	511	200	N/A	100	N/A	0.35	N/A
$Ag_2VO_2PO_4 + PTFE + C$	0.08	0.000081	2.281	0.0147	28	0.205	4.342	0.35	31.59	0.798	0.656	0.017	0.4719	0.0019
$Ag_2VO_2PO_4 + PTFE + C$	0.2	0.0058	1.876	0.023	21.84	0.2	15	19	1436	200	67	11	0.51	0.03
$Ag_2VO_2PO_4 + PTFE + C$	0.5	0.0018	1.537	0.0137	18.05	0.49	5.687	2.59	57.69	3.27	24.45	2.93	0.38	0.004

 Table S4. Tabulated Equivalent Circuit Fit Results for EIS data.

Figure S5. Ag⁰ (111) and Ag₂VO₂PO₄ (222) peak intensities vs. scan number from EDXRD scans of the cathode region in Li / Ag₂VO₂PO₄ cells. Scan number increases moving from the lithium interface to the current collector interface.

Figure S6. Ag⁰ (111) and Ag₂VO₂PO₄ (222) peak intensities vs. scan number from EDXRD scans of the cathode region in Li / Ag₂VO₂PO₄ + PTFE cells. Scan number increases moving from the lithium interface to the current collector interface.

Figure S7. Ag^0 (111) and $Ag_2VO_2PO_4$ (222) peak intensities vs. scan number from EDXRD scans of the cathode region in Li / $Ag_2VO_2PO_4$ + PTFE + C cells. Scan number increases moving from the lithium interface to the current collector interface.

Figure S8. Ex-situ X-ray diffraction spectra for (A) Ag₂VO₂PO₄ only (B) Ag₂VO₂PO₄+PTFE and (C) Ag₂VO₂PO₄+PTFE+C at different levels of discharge with the red lines indicating the SVPO peaks and blue lines Ag⁰.

Ag ₂ VO ₂ PO ₄ non-discharged									
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.5 ± 0.4	2.8 ± 0.8	2.8 ± 0.8	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	-
Interatomic Distance (Å)	2.29 ± 0.07	2.61 ± 0.05	3.63 0.01	3.97 ± 0.01	3.90 ± 0.01	3.92 ± 0.01	3.66 ± 0.05	$\begin{array}{c} 3.90 \pm \\ 0.05 \end{array}$	-
E _o (eV)	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	0.3 ± 1.4	-
Debye Waller Factor (Å ⁻²)	0.024 ± 0.006	0.024 ± 0.006	0.001 ± 0.006	0.001 ± 0.006	0.001 ± 0.006	0.001 ± 0.006	0.008 ± 0.007	0.008 ± 0.007	-
R-factor	1.3								
Ag ₂ VO ₂ PO ₄	+ PTFE nor	n-discharge	ed and a second se			A -			
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.7 ± 1.4	2.8 ± 0.7	2.8 ± 0.7	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	-
Interatomic Distance (Å)	2.31 ± 0.02	2.63 ± 0.04	3.63 ± 0.03	3.98 ± 0.03	3.91 ± 0.03	3.92 ± 0.03	3.64 ± 0.05	$\begin{array}{c} 3.88 \pm \\ 0.05 \end{array}$	-
E _o (eV)	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	0.2 ± 1.3	-
Debye Waller Factor (Å ⁻²)	0.025 ± 0.005	0.25 ± 0.005	0.002 ± 0.005	$\begin{array}{c} 0.002 \pm \\ 0.005 \end{array}$	0.002 ± 0.005	$\begin{array}{c} 0.002 \pm \\ 0.005 \end{array}$	0.008 ± 0.006	0.008 ± 0.006	-
R-factor	1.6								
Ag ₂ VO ₂ PO ₄ -	PTFE + C	non-discha	arged	[[ſ	[
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.2 ± 1.4	2.6 ± 0.7	2.6 ± 0.7	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	-
Interatomic Distance (Å)	2.31 ± 0.02	2.63 ± 0.05	3.63 ± 0.03	3.98 ± 0.03	3.91 ± 0.03	3.92 ± 0.03	3.67 ± 0.05	3.91 ± 0.05	-
E _o (eV)	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	0.9 ± 1.5	-
Debye Waller Factor (Å ⁻²)	0.023 ± 0.005	0.023 ± 0.005	0.001 ± 0.006	0.001 ± 0.006	0.001 ± 0.006	0.001 ± 0.006	0.008 ± 0.008	0.008 ± 0.008	-
R-factor	1.7								

Table S9. EXAFS fitting results including near neighbors, interatomic distance, energy shift Eo, Debye Waller factor,and R-factor for nondischarged electrodes.

Ag2VO2PO4 0.08 e									
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	6.1 ± 1.8	3.2 ± 1.0	3.2 ± 1.0	1.6 ± 0.5	1.6 ± 0.5	1.6 ± 0.5	1.6 ± 0.5	1.6 ± 0.5	-
Interatomic Distance (Å)	2.31 ± 0.03	2.64 ± 0.05	3.64 ± 0.03	3.99 ± 0.03	3.92 ± 0.03	3.93 ± 0.03	3.59 ± 0.03	3.83 ± 0.03	-
$E_{o}(eV)$	-0.3 ±	-0.3 ±	-0.3 ±	-0.3 ±	-0.3 ±	-0.3 ±	-0.3 ±	-0.3 ±	-
Debye Waller Factor (Å ⁻²)	0.027 ± 0.006	0.027 ± 0.006	0.010 ± 0.005	0.010 ± 0.005	0.010 ± 0.005	0.010 ± 0.005	0.010 ± 0.005	0.010 ± 0.005	-
R-factor	1.8								
		_							
Ag ₂ VO ₂ PO ₄ -	+ PTFE 0.0	8 e			·				
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.4 ± 1.4	2.8 ± 0.7	2.8 ± 0.7	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	-
Interatomic Distance (Å)	2.29 ± 0.02	2.62 ± 0.05	3.63 ± 0.03	3.97 ± 0.03	3.91 ± 0.03	3.92 ± 0.03	3.57 ± 0.03	3.81 ± 0.03	-
E _o (eV)	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-0.1 ± 1.5	-
Debye Waller Factor (Å ⁻²)	$\begin{array}{c} 0.026 \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.026 \pm \\ 0.005 \end{array}$	0.007 ± 0.006	0.007 ± 0.006	0.007 ± 0.006	0.007 ± 0.006	0.014 ± 0.010	0.014 ± 0.010	-
R-factor	1.7								
Ag2VO2PO4-	+ PTFE + (C 0.08 e							
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.6 ± 1.3	2.8 ± 0.6	2.8 ± 0.6	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	0.5 ± 0.2
Interatomic Distance (Å)	2.31 ± 0.02	2.64 ± 0.05	3.64 ± 0.03	3.99 ± 0.03	3.93 ± 0.03	3.94 ± 0.03	3.59 ± 0.03	3.83 ± 0.03	2.87 ± 0.03
E _o (eV)	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3	0.1 ± 1.3
Debye Waller Factor (Å ⁻²)	$\begin{array}{c} 0.02\overline{7 \pm} \\ 0.004 \end{array}$	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003	0.001 ± 0.003
R-factor	1.4								

Table S10. EXAFS fitting results including number of near neighbors, interatomic distance, energy shift Eo, DebyeWaller factor, and R-factor for electrodes discharged to 0.08 electron equivalents.

Ag ₂ VO ₂ PO ₄ 0.2 e									
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.8 ± 1.4	2.8 ± 0.7	2.8 ± 0.7	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	1.4 ± 0.4	0.5 ± 0.3
Interatomic Distance (Å)	2.31 ± 0.02	2.64 ± 0.05	3.65 ± 0.03	3.99 ± 0.03	3.93 ± 0.03	3.94 ± 0.03	3.6 ± 0.03	3.84 ± 0.03	2.87 ± 0.03
E _o (eV)	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4	0.1 ± 1.4
Debye Waller Factor (Å ⁻²)	0.028 ± 0.005	0.028 ± 0.005	0.010 ± 0.004	0.010 ± 0.004	0.010 ± 0.004	0.010 ± 0.004	0.010 ± 0.004	0.010 ± 0.004	0.010 ± 0.004
R-factor	1.6								
Ag ₂ VO ₂ PO ₄	+ PTFE 0.2	e							
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.5 ± 1.1	2.8 ± 0.5	2.8 ± 0.5	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	0.5 ± 0.3
Interatomic Distance (Å)	2.31 ± 0.02	2.64 ± 0.05	3.63 ± 0.03	3.97 ± 0.03	3.91 ± 0.03	3.92 ± 0.03	3.58 ± 0.03	3.82 ± 0.03	2.85 ± 0.03
E _o (eV)	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0	-0.2 ± 1.0
Debye Waller Factor (Å ⁻²)	0.026 ± 0.004	0.026 ± 0.004	0.009 ± 0.004	0.009 ± 0.004	0.009 ± 0.004	0.009 ± 0.004	0.009 ± 0.004	0.009 ± 0.004	0.009 ± 0.004
R-factor	1.3								
Ag ₂ VO ₂ PO ₄	+ PTFE + C	С 0.2 е	-	r	-	r	-	-	
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.5 ± 1.3	2.8 ± 0.6	2.8 ± 0.6	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	1.4 ± 0.3	0.9 ± 0.3
Interatomic Distance (Å)	2.32 ± 0.02	2.65 ± 0.02	3.66 ± 0.03	4.00 ± 0.03	3.94 ± 0.03	3.95 ± 0.03	3.61 ± 0.03	3.85 ± 0.03	2.88 ± 0.02
E _o (eV)	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2
Debye Waller Factor (Å ⁻²)	0.027 ± 0.005	0.008 ± 0.008	0.008 ± 0.008	0.008 ± 0.008	0.008 ± 0.008	0.008 ± 0.008	$\overline{0.008} \pm 0.008$	0.008 ± 0.008	0.008 ± 0.008
R-factor	1.6								

Table S11. EXAFS fitting results including number of near neighbors, interatomic distance, energy shift Eo, DebyeWaller factor, and R-factor for electrodes discharged to 0.2 electron equivalents.

Ag ₂ VO ₂ PO ₄ 0.5 e									
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.0 ± 1.4	2.6 ± 0.7	2.6 ± 0.7	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	2.1 ± 0.5
Interatomic Distance (Å)	2.33 ± 0.03	2.66 ± 0.04	3.64 ± 0.04	3.99 ± 0.04	3.93 ± 0.04	3.94 ± 0.04	3.59 ± 0.04	3.83 ± 0.04	2.87 ± 0.01
E _o (eV)	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2	0.5 ± 1.2
Debye Waller Factor (Å ⁻²)	$\begin{array}{c} 0.028 \pm \\ 0.006 \end{array}$	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003	0.011 ± 0.003
R-factor	1.6								
Ag ₂ VO ₂ PO ₄	+ PTFE 0.5	e							
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	5.1 ± 1.4	2.6 ± 0.7	2.6 ± 0.7	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.7 ± 0.5
Interatomic Distance (Å)	2.32 ± 0.03	2.66 ± 0.04	3.64 ± 0.04	3.98 ± 0.04	3.92 ± 0.04	3.93 ± 0.04	3.58 ± 0.04	3.82 ± 0.04	2.87 ± 0.01
E _o (eV)	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4	0.4 ± 1.4
Debye Waller Factor (Å ⁻²)	0.028 ± 0.006	0.028 ± 0.006	0.010 ± 0.003	0.010 ± 0.003	0.010 ± 0.003	0.010 ± 0.003	0.010 ± 0.003	0.010 ± 0.003	$\begin{array}{c} 0.010 \pm \\ 0.003 \end{array}$
R-factor	2.0								
Ag ₂ VO ₂ PO ₄	+ PTFE + C	C 0.5 e							
Path	Ag-O path 1 (SVPO)	Ag-O path 2 (SVPO)	Ag-O path 3 (SVPO)	Ag-O path 4 (SVPO)	Ag-P (SVPO)	Ag-V (SVPO)	Ag-Ag path 1 (SVPO)	Ag-Ag path 2 (SVPO)	Ag-Ag (fcc metal)
Near Neighbors	4.4 ± 1.5	1.2 ± 0.8	1.2 ± 0.8	1.1 ± 0.4	1.1 ± 0.4	1.1 ± 0.4	1.1 ± 0.4	1.1 ± 0.4	2.4 ± 0.5
Interatomic Distance (Å)	2.32 ± 0.04	2.62 ±0.09	3.62 ± 0.05	3.97 ± 0.05	3.90 ± 0.05	3.92 ± 0.05	3.58 ± 0.05	3.81 ± 0.05	$\begin{array}{c} 2.85 \pm \\ 0.01 \end{array}$
E _o (eV)	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3	-0.7 ± 1.3
Debye Waller Factor (Å ⁻²)	0.025 ± 0.007	0.025 ± 0.007	0.012 ± 0.003	0.012 ± 0.003	0.012 ± 0.003	0.012 ± 0.003	0.012 ± 0.003	0.012 ± 0.003	0.012 ± 0.003
R-factor	2.6								

Table S12. EXAFS fitting results including number of near neighbors, interatomic distance, energy shift E₀, DebyeWaller factor, and R-factor for electrodes discharged to 0.5 electron equivalents.

Figure S13: EXAFS fit of the undischarged state for the Ag₂VO₂PO₄ electrode in $|\chi(R)|$ and $k^2\chi(k)$.

Figure S14: EXAFS fit of the Ag₂VO₂PO₄ electrode discharged to 0.08 electron equivalents in $|\chi(R)|$ and $k^2\chi(k)$.

Figure S15: EXAFS fit of the Ag₂VO₂PO₄ electrode discharged to 0.2 electron equivalents in $|\chi(R)|$ and $k^2\chi(k)$.

Figure S16: EXAFS fit of the Ag₂VO₂PO₄ electrode discharged to 0.2 electron equivalents in $|\chi(R)|$ and $k^2\chi(k)$.

Figure S17. Quantitative analysis of lithium anodes recovered from $Li/Ag_2VO_2PO_4$.