Supporting information

High-efficiency hydrogen evolution catalyzed by iron phosphide nanocrystals

Zhichao Gao,^a Qian Gao,^a Zhipeng Liu,^a Cong Zhang,^a Xiaoting Zhang,^a Xin Liu,^a Runwei Wang^b and Nan Li^{*a}

^aCollege of Material Science and Engineering, Key Laboratory of Automobile

Materials of Ministry of Education, Jilin University, 2699 Qianjin Street,

Changchun, 130012, P. R. China.

^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

*Corresponding author. Phone: +86 43185094856. Fax: +86 43185094856.

E-mail address: lin@jlu.edu.cn

Synthesis of CoP/C NCs

1.455 g of cobalt nitrate hexahydrate (Co(NO₃)₃·6H₂O) was ground with 0.787 g of ammonium bicarbonate (NH₄HCO₃) in a mortar. The reagents were ground until the bubbling ceased (~5-10 min) and then 0.24 g carbon black (Carbot Vulcan XC72R) (with Co/C mole ratio of 1/4) was added to the slurry. The following processes were the same as that of Fe₂O₃/C.

Synthesis of Ni₂P/C NCs

1.454 g of nickel nitrate hexhydrate (Ni(NO₃)₃·6H₂O) was ground with 0.787 g ammonium bicarbonate (NH₄HCO₃) in a mortar. After ~10 min, 0.24 g of carbon black (Carbot Vulcan XC72R) (with Ni/C mole ratio of 1/4) was added to the slurry. The following processes were the same as that of Fe₂O₃/C except that both the calcination and

the	phosphidation	step	were	prolonged	from	1h	to	2h.
-----	---------------	------	------	-----------	------	----	----	-----

Fig. S1 SEM image of pure FeP (a) and bare carbon black (b).

Fig. S2 Low-resolution TEM image of FeP/C NCs.

Fig. S3 EDS spectrum of FeP/C NCs.

Fig. S4 Polarization curves of FeP/C NCs catalysts synthesized with various Fe/C mole ratio.

Fig. S5 Nyquist plots of FeP/C NCs catalysts synthesized with various Fe/C mole ratio.

Fig. S6 Calculation of exchange current density for FeP/C NCs, pure FeP and Pt/C.

Exchange current density (j_0) was calculated using extrapolation methods. When the value of overpotential (η) is 0, the log *j* values of FeP/C, FeP and Pt/C are -0.2, -0.3 and -0.02 respectively. Based on Tafel equations, j_0 was calculated to be 0.631, 0.501 and 0.955 mA cm⁻² for FeP/C, FeP and Pt/C respectively.

Fig. S7 Cyclic voltammograms (CV) recorded for pure FeP at various scan rates.

Catalyst	Current density (j, mA/cm²)	η at the corresponding <i>j</i> (mV)	Exchange Current density (mA/cm ²)	Tafel slope (mV/dec)	Ref.	
FeP/C NCs	10	70	0.631	56	This work	
Pure FeP	10	157	0.501	138	This work	
CoP/C NCs	10	117		58	This work	
Ni ₂ P/C NCs	10	253		92	This work	
FeP-GS	10	123	0.12	50	[33]	
FeP array		96	0.17	39	[35]	
FeP ₂ array	10	61	0.55	31		
FeP/CC	10	39	0.59	32	[36]	
FeP nanosheets	10	~240		67	[37]	
FeP NRs	10	120	0.062	55	[38]	
FeP nanrod /Ti	10	85		60	[39]	
FeP NPs	10	112	0.22	58	[40]	
FeP/NCNT	10	113	0.15	59	[41]	
FeP NA/Ti	10	55	0.42	38	[44]	
Fe _{0.5} Co _{0.5} P/CC	10	37		30	[45]	
CoP/CNT	10	122	0.13	54	[16]	
CoP NWs		110	0.15	54		
CoP NSs	10	164	0.032	61	[17]	
CoP NPs		221	0.054	87		

Table S1 Comparison of the HER performances for recently reportedtransition metal phosphide-based catalysts (in $0.5M H_2SO_4$ electrolyte).

CoP nanotube	10	129		60	[18]
u-CoP/Ti	10	45		49.3	[19]
CoP/Ti	10	90		43	[20]
CoP/CC	10	67	0.288	51	[21]
CoP-RGO	10	156.87	0.057	70.2	[22]
Ni ₂ P/Ti	20	138		60	[23]
Cu ₃ P NW/CF	10	143	0.18	67	[24]
Amorphous MoP nanoparticles	10	90	0.12	45	[29]
WP NAs/CC	10	130	0.29	69	[30]
FeS ₂ film	4	$190\sim 270$	5.2e ⁻⁴	62.5	[9]
FeSe ₂ film	4	$190\sim 270$	3.0e ⁻⁴	65.3	[9]