Electronic Supplementary Information

Gold Nanoparticle Superlattices: Structure and Cavities Studied by GISAXS and PALS

Natalia Olichwer¹, Tönjes Koschine^{2,#}, Andreas Meyer¹, Werner Egger³, Klaus Rätzke^{2,*} and Tobias Vossmeyer^{1,*}

¹Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg,

Germany. *E-mail: tobias.vossmeyer@chemie.uni-hamburg.de

²Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering,

Christian-Albrechts-University of Kiel, Kaiserstraße 2, D-24143 Kiel, Germany. *E-mail:

kr@tf.uni-kiel.de

[#]Current address: Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium

³Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München,

Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany

*Corresponding Authors

E-mail: tobias.vossmeyer@chemie.uni-hamburg.de; kr@tf.uni-kiel.de

XPS measurements

The synthesis of 1-dodecanethiol (DDT)-stabilized GNPs is based on the reduction of chloro(triphenylphosphine)gold(I) with *tert*-butylamine borane complex in the presence of DDT. The as-synthesized particles were purified by precipitation with ethanol. For reliable PALS measurements a quantitative elimination of nitrogen compounds is required, as these have been shown to quench positronium^{1,2}. As confirmed by XPS measurements and elementary analysis (detection limit of 0.5 %) the samples prepared and purified as described in the experimental section did not reveal any contamination with nitrogen compounds (see XPS spectra below, Figure S1).

Figure S1: XPS spectra (left: survey, right: N region) of GNP superlattice films prepared from sample $GNP_{4 nm}3$ (blue) and $GNP_{5.5 nm}3$ (magenta). In the survey spectra the expected signals for the elements Au, C and S and some O (due to the exposure to atmosphere prior to the XPS measurements) are observed. The absence of a peak in the energy range between 395 to 410 eV reveals that no nitrogen compounds were detectable.

Figure S2: a), b) SEM images of samples $\text{GNP}_{5.5 \text{ nm}}1$ shown at two different magnifications and c) the Fourier transform of the SEM image presented in Figure part b). The scale bars are 10 μ m in a) and 20 nm in b).

Figure S3: Representative SEM images of samples a) $GNP_{4 nm}1$, b) $GNP_{5.5 nm}1$, c) $GNP_{4 nm}2$, and d) $GNP_{5.5 nm}2$ providing cross-sectional views of the cleaved samples.

Calculation of gold content

 $n_{\rm Au} = \frac{m_{\rm Au}}{m_{\rm Au} + m_{\rm DDT}}$ $m_{\rm Au} = f_{\rm Au} \cdot \rho_{\rm Au}$ $f_{\rm Au} = \frac{r^3}{r_{\rm eff}{}^3} \cdot 0.74$ $r_{\rm eff} = r + \frac{\delta}{2}$ $m_{\rm DDT} = f_{\rm DDT} \cdot \rho_{\rm DDT}$ $f_{\rm DDT} = 1 - f_{\rm Au}$ with $n_{\rm Au}$: mass/mass fraction of gold

 m_{Au} : mass/volume fraction of gold

 m_{DDT} : mass/volume fraction of DDT

 f_{Au} respectively f_{DDT} : volume/volume fraction of gold respectively DDT

 ρ_{DDT} : density of DDT (0.845 g/cm³)

 ρ_{Au} : density of gold (19.32 g/cm³)

r: radius of the gold cores (from TEM measurements)

 δ : interparticle edge-to-edge distance obtained by subtracting the TEM-diameter of the gold

cores from the center-to-center nearest neighbor distance determined by GISAXS

References

- 1 O. E. Mogensen, in Springer Series in Chemical Physics, ed. V. I. Goldanskii, Springer-Verlag, Berlin, Heidelberg, 1995, vol. 58.
- Y. C. Jean, P. E. Mallon and D. M. Schrader, Principles and Applications of Positron 2 and Positronium Chemistry, World Scientific, New Jersey London Singapore Hong Kong, 2003.