Electronic Supporting Information

High-Density Insensitive Energetic Materials: 2,4,6-Tris(2-fluoro-2,2dinitroethoxy)-1,3,5-triazine

Alexander A. Gidaspov, Vladimir V. Bakharev, Kyrill Yu. Suponitsky, Valery G. Nikitin and Aleksei B. Sheremetev

Table 1S. Selected torsion angles (°) in compound 1 in comparison with those of three symmetrically independent molecules A, A', A'' of compound 5.

т ^с 1	fluorodinitroeth	oxy-triazine 5	trinitroethoxy-triazine 5			
l'orsion angle	Α	Α'	А	Α'	A''	
N1-C1-O1-C4	175.78(14)		178.8(6)	-173.2(6)	-171.3(6)	
C1-O1-C4-C5	-174.02(14)		129.9(6)	117.5(7)	113.7(7)	
O1-C4-C5-N4	57.24(17)		40.4(7)	36.5(8)	41.6(8)	
O1-C4-C5-N5(F1)	-64.36(17)		-80.2(7)	-83.2(7)	-80.3(7)	
O1-C4-C5-N6	172.95(13)		159.8(5)	155.9(6)	161.3(6)	
C4-C5-N4-O2	-136.77(15)		-131.3(7)	-127.4(7)	-121.1(7)	
C4-C5-N5-O5			-139.5(7)	-141.9(9)	-151.5(7)	
C4-C5-N6-O6	146.92(15)		-141.6(7)	-142.2(7)	-140.6(7)	
N2-C2-O8-C6	-0.4(2)		172.7(6)	179.2(6)	-179.8(6)	
C2-O8-C6-C7	161.21(14)		160.7(7)	161.4(6)	162.7(6)	
O8-C6-C7-N7(F2)	-178.02(13)		46.8(9)	-50.0(7)	-50.2(7)	
O8-C6-C7-N8	61.6(2)		-78.5(8)	73.6(7)	70.6(7)	
O8-C6-C7-N9	-58.34(18)		166.1(6)	-167.2(5)	-168.5(5)	
C6-C7-N7-O9			-114.3(10)	140.8(7)	143.7(7)	
C6-C7-N8-O12	12.0(2)		-127.1(8)	137.6(7)	123.3(7)	
C6-C7-N9-O13	83.6(2)		-157.7(8)	137.8(7)	144.5(7)	
N3-C3-O15-C8	-170.52(15)		176.3(6)	179.7(6)	178.8(6)	
C3-O15-C8-C9	-148.01(19)	-171.0(4)	-131.8(7)	-145.6(6)	-143.2(6)	
O15-C8-C9-N10	-53.2(3)	52.4(7)	-45.8(8)	-42.2(8)	-42.6(8)	
O15-C8-C9-N11(F3)	67.8(3)	-72.6(7)	77.0(8)	80.5(7)	78.0(8)	
O15-C8-C9-N12	-168.5(2)	166.5(4)	-162.4(8)	-162.9(7)	-161.3(7)	
C8-C9-N10-O17	133.0(5)	44.8(10)	137.1(8)	130.0(7)	127.9(7)	
C8-C9-N11-O19			126.3(7)	146.2(7)	145.3(7)	
C8-C9-N12-O20	-141.4(2)	-118.6(4)	133.4(7)	130.6(7)	133.4(7)	

Table 2S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of of compound **1** with its closest environment in the crystal obtained at M052X/aug-cc-pvdz level of approximation.^{a,b}

Entry	Close	contact	Distance	Symmetry Code	Energy	Type of Interaction
	021	C2	2.992	1+x,y,z		
1	016	03	2.898	1+x,y,z	-11.6	NitroNitro
	016	C1	2.955	1+x.y.z		Οπ
	F3'	C1	3.005	1+x.y.z		Fπ
	03	016	2.898	-1+x.v.z		
2	C1	016	2 955	-1+x v z	-11.6	Nitro Nitro
_	C2	021	2 992	-1+x v z	11.0	0π
	C1	F3'	3.005	-1+x.y.z		$F \pi$
	012	06	3 009	1+x v 1+z		
3	012	N4	3 003	1 + x y + z	-4 5	Nitro Nitro
	012	N6	3 012	1+x y 1+z	1.0	11110
	N8	03	2.934	1+x y 1+z		
	03	N8	2.934	-1+x y -1+z		
4	06	012	3 009	-1+x,y, 1+z	-4 5	Nitro Nitro
	N4	012	3.003	-1+x,y, 1+z	1.5	11110111110
	N6	012	3.012	-1+x,y,-1+z		
5	011	012	3.029	<u>v v 1+7</u>	_1 0	Nitro Nitro
6	07	011	3.029	x, y, 1+z	-1.9	Nitro Nitro
0	E3	016'	2.029	$1 \times 1 \times 1 = 7$	-1.9	11110111110
7	017	017	2.928	$1 \times 1 \times 1 \times 1 = 7$	5.6	Nitro Nitro
/	016'	F3	2.937	1 - x, 1 - y, 1 - z	-5.0	F Nitro
	010		2.928	$1 \times 1 \times 2 = 2$		1111110
Q		014	2.420	1 - x, 1 - y, 2 - Z	82	СЧО
0			2.420	1 - x, 1 - y, 2 - Z	-0.2	С-пО
			2.559	1 - x, 1 - y, 2 - Z		
	N12	014	2.339	1-x, 1-y, 2-z		
	017	1017	3.018	2 - x, 1 - y, 1 - z		
	017	INIZ NIO	3.018	2-X,1-Y,1-Z		
0	UI/	NIU 017	2.913	2-x,1-y,1-z	2.0	NI:ture NI:ture
9	NIU 017		2.913	2-x,1-y,1-z	-3.0	NitroNitro
	01/	F5'	2.855	2-x,1-y,1-z		FNitro
	U10 E21	010	2.976	2-x,1-y,1-z		
	F3'		2.855	2-x,1-y,1-z		
10		016	2.976	2-x,1-y,1-z	1 1	
10	F2	020	3.176	2-x,1-y,2-z	-1.1	
11	D20	F2	3.176	2-X,1-Y,2-Z	7.4	
11		013	2.835	x, 1/2 - y, -1/2 + z	-/.4	FNitro
10			2.957	X, 1/2 - y, -1/2 + Z	7.4	0π
12	012		2.957	x, 1/2 - y, 1/2 + z	-/.4	FNitro
	013	FI	2.835	x,1/2-y,1/2+z		Οπ
10	02	08	2.991	-1+x, 1/2-y, -1/2+z		
13	O_2	C_2	2.921	-1+x, 1/2-y, -1/2+z	-4.4	NitroNitro
	06	015	2.851	-1+x, 1/2-y, -1/2+z		Οπ
	06	<u>C3</u>	2.926	-1+x,1/2-y,-1/2+z		
	08	02	2.991	1+x,1/2-y,1/2+z		
14	015	06	2.851	1+x,1/2-y,1/2+z		NıtroNitro
	C2	02	2.921	1+x, 1/2-y, 1/2+z	-4.4	Οπ
	C3	06	2.926	1+x, 1/2-y, 1/2+z		

^a Contacts given in bold correspond to interactions with minor part of the disordered fluorodinitroethoxy substituent ^b Calculation was carried out by the Gaussian program [M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A., Jr. Montgomery, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision E.01*; Gaussian, Inc.: Wallingford, CT (2004)]

Parameter	1 (100K)	1 (298K)	
Empirical formula	$C_9H_6F_3N_9O_{15}$	$C_9H_6F_3N_9O_{15}$	
Fw	537.23	537.23	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> , Å	7.3284(6)	7.4308(4)	
b, Å	22.5119(17)	22.8382(12)	
<i>c</i> , Å	11.7209(9)	11.8801(6)	
β , deg.	107.3420(10)	107.5930(10)	
<i>V</i> , Å ³	1845.8(2)	1921.83(17)	
Ζ	4	4	
$d_{\text{calc}}, \text{g} \cdot \text{cm}^{-3}$	1.933	1.857	
μ, mm ⁻¹	0.201	0.193	
F(000)	1080	1080	
θ range, deg.	1.81 - 30.00	1.81 - 30.00	
independent reflections	5392	5601	
R _{int}	0.0683	0.0275	
reflections with $I > 2\sigma(I)$	3520	3875	
Completeness to theta θ , %	100	99.8	
$GOF(F^2)$	1.007	1.036	
$R_1(F) (I \geq 2\sigma(I))^a$	0.0440	0.432	
$wR_2(F^2)$ (all data) ^b	0.0956	0.1224	
Largest diff. peak/hole, e·Å-3	0.389 / -0.273	0.275 / -0.265	
№ CCDC	1507749	1507750	

Table 3S. Crystallographic data for low-temperature (100K) and room-temperature (298K) for compound 1^c.^d

^a $R_1 = \sum |F_o - |F_c|| / \sum (F_o);$ ^b $wR_2 = (\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}$

^c Difference in packing density upon going from 100 to 298K of compound **1** is 4.0%

^d for data processing and crystal structure solution and refinement, the program packages APEX2 and SHELXTL were used [*APEX2*, Bruker AXS Inc., Madison, Wisconsin, USA, **2009**; Sheldrick, G.M. *Acta Cryst*, **2008**, *A64*, 112]