Supporting information

Supporting information1
Experimental Section
Chemical Synthesis1
General procedure for the preparation of 3-amino-I,2,4-triazole derivatives (3)1
General procedure for the synthesis of 2-chloro-N-(1H-1,2,4-triazol-5-yl)acetamide derivatives (4) $\ldots \ldots 1$
General procedure for the synthesis of N-(1,3-disubstituted- 1H- 1,2,4- triazol-5-yl)- 2 - phenoxy-
acetamides (5)2
General procedure for the synthesis of 1,3-disubstituted-N-(2-phenoxyethyl)-1H-1,2,4-triazol-5-amines (6) 2
General procedure for synthesis of 4-triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-3,8-diones (1) and 4-
triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-8-ones (2)2
$^1\text{H-NMR}$ (CDCl3), $^{13}\text{C-NMR}$ (CDCl3) and HR-MS data of compounds2
Cell Proliferation Assay4
Cell Apoptosis Assay4
¹ H-NMR (CDCl ₃) and ¹³ C-NMR (CDCl ₃) of compounds6
HPLC Purity Data for Compounds40

Experimental Section

Chemical Synthesis. Silica gel F_{254} plates were used for thin layer chromatography (TLC) in which the spots were examined under UV light at 254 nm and then developed by an iodine vapor. Flash chromatography was performed on silica gel H. Anhydrous solvents were purified according to standard procedures. All other commercial reagents were purchased from commercial sources and used without purification. NMR spectra were recorded on a Varian Mercury spectrometer (400 MHz and 600 MHz). Chemical shifts are reported as δ values in ppm and are calibrated according to TMS. LCMS/ HRMS were recorded on a Bruker Daltonics Data analysis 3.4 mass spectrometer and a Thermo LTQ Orbitrap-XL mass spectrometer. High performance liquid chromatography (HPLC) was performed with a YoungLin instrument SP930D, one equipped with Dikma C18 columns using methanol as an eluent. X-Ray data were collected on a Bruker APEX-II equipped with a CCD area detector using Mo/K α radiation. The structures were solved by direct method using SHELXL-97. Unless specified otherwise, all tested compounds were confirmed to be >95% pure by HPLC.

General procedure for the preparation of 3-amino-l,2,4-triazole derivatives (3)²⁷. A mixture of N-cyanoimidates (1mmol) and phenylhydrazine (1.2 mmol) were refluxed for 4h in methanol (3 mL). Then the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel to afford 3.

General procedure for the synthesis of 2-chloro-N-(1H-1,2,4-triazol-5-yl)acetamide derivatives (4). To a solution of **3** (14.4 mmol) in CH_2Cl_2 (80 mL) were added dropwise triethylamine (6 mL, 43.2 mmol) and 2-chloroacetyl chloride (4.3 mL, 57.6 mmol) in ice bath under N₂, the resultant mixture was stirred at room temperature for 5 h, diluted with CH_2Cl_2 (120 mL) and then the organic solution was washed with saturated Na₂CO₃ (2 x 100 mL), water (2 x 100 mL) and brine (100mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography to afford **4**.

General procedure for the synthesis of N-(1,3-disubstituted-1H-1,2,4-triazol-5-yl)-2-phenoxyacetamides (5). Phenol (744 mg, 6 mmol) was reacted with sodium hydride (244 mg, 12 mmol) in THF (10mL) at room temperature for 1h, then concentrated and dried in vacuo to afford sodium phenoxide. To the flask containing in situ prepared sodium phenoxide were added 4 (2 mmol) and freshly distilled DMF (10 mL). The resultant mixture was stirred at 50 °C under N₂ for 5 h and quenched with water (100 mL). The reaction solution was extracted with ethyl acetate (3 x 60 mL). The combined organic layer was washed with water (2 x 100 mL) and brine (1 x 100 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography to afford **5**.

General procedure for the synthesis of 1,3-disubstituted-N-(2-phenoxyethyl)-1H-1,2,4-triazol-5amines (6). To a solution of 5 (1.5 mmol) in redistilled THF (20 mL) was added LiAlH₄ (228 mg, 6 mmol) and AlCl₃ (339 mg, 3 mmol) at -20 °C under N₂. The reaction solution was warmed slowly to room temperature and continued to stir for 6 h, then diluted with ethyl acetate (60 mL). The organic layer was separated and washed with 10% H₂SO₄ solution (2 x 60 mL) and water (1 x 100 mL). After dried over Na₂SO₄, the solution was filtered and concentrated in vacuum. The residue was purified by flash chromatography to afford **6**.

General procedure for synthesis of 4-triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-3,8-diones (1) and 4-triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-8-ones (2). A flame dried round bottom flask was charged, under a nitrogen atmosphere, with 5 or 6 (0.1mmol), $Phl(CF_3CO_2)_2$ (0.25 mmol) and $Cu[(CH_3CN)_4]ClO_4$ (0.01 mmol, for 5 to 1) or $Cu(CF_3SO_3)_2$ (0.015 mmol, for 6 to 2). The fresh distilled dichloromethane (10 mL) was added. After stirred at room temperature for 5h, the mixture was washed with saturated NaCl solution and dried over $MgSO_4$. The solution was filtered and concentrated in vacuum. The residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as an eluent to give 1 or 2.

¹H-NMR (CDCl₃),¹³C-NMR (CDCl₃) and HR-MS data of compounds

4-(1,3-Diphenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (1a). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 8.07-8.05 (m, 2H), 7.56-7.50 (m, 5H), 7.45-7.42 (m, 3H), 6.56 (d, J = 10.0 Hz, 2H), 6.14 (d, J = 10.0 Hz, 2H), 4.56 (s, 2H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.5, 170.3, 161.8, 142.2, 141.7, 136.3, 131.1, 129.9, 129.9, 129.8, 129.6, 128.6, 126.4, 124.8, 88.1 and 66.0. HRMS (ESI) m/z (%) for C₂₂H₁₇N₄O₃ (M+H): Calcd. 385.1301; Found 385.1293.

4-(1,3-Diphenyl-1H-1,2,4-triazol-5-yl)-6-methoxy-1-oxa-4-azaspiro- [4.5]deca-6,9-diene-3,8-dione (1b). ¹H-NMR (CDCl₃,400MHz) δ (ppm): 8.05-8.02 (m, 2H), 7.55-7.51 (m, 5H), 7.44-7.41 (m, 3H), 6.30 (d, *J* = 10.0 Hz, 1H), 6.10 (dd, *J* = 10.0, 1.6 Hz, 1H), 5.47 (d, *J* = 1.6 Hz, 1H), 4.70 (d, *J* = 14.4 Hz, 1H), 4.51 (d, *J* = 14.4 Hz, 1H), 3.69 (s, 3H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 185.1, 171.2, 168.9, 161.6, 138.2, 136.3, 132.1, 129.9, 129.8, 129.6, 129.4, 126.2, 124.6, 103.0, 88.0, 67.5 and 56.3. HRMS (ESI) for $C_{23}H_{19}N_4O_4$ (M+H): Calcd. 415.1406; Found 415.1402.

4-(1-Methyl-3-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]- deca-6,9-diene-3,8-dione (1c). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.91-7.90 (m, 2H), 7.39 (br, 3H), 6.90 (d, J = 10.0 Hz, 2H), 6.35 (d, J = 10.0 Hz, 2H), 4.64 (s, 2H), 3.88 (s, 3H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.6, 168.9, 160.6, 143.0, 141.7, 131.4, 130.1, 139.5, 128.5, 125.9, 88.0, 65.8 and 36.1. HRMS (ESI) m/z (%) for C₁₇H₁₄N₄O₃Na (M+Na): Calcd. 345.0964; Found 345.0988.

4-(1-Methyl-5-phenyl-1H-1,2,4-triazol-3-yl)-1-oxa-4-azaspiro[4.5]- deca-6,9-diene-3,8-dione (1d). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.59-7.57 (m, 2H), 7.50-7.49 (m, 2H), 6.90 (d, J = 10.0 Hz, 2H), 6.31 (d, J = 10.0 Hz, 2H), 4.61 (s, 2H), 3.96 (s, 3H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 184.5, 168.9, 155.2, 151.1, 143.2, 130.9, 130.6, 128.9, 128.7, 119.1, 87.7, 66.4 and 29.3. HRMS (ESI) m/z (%) for C₁₇H₁₄N₄O₃Na (M+Na): Calcd. 345.0964; Found 345.0965.

4-(3-(4-Nitrophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (1e). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 8.30 (d, J = 8.8 Hz, 2H), 8.24 (d, J = 8.8 Hz, 2H), 7.59-7.57 (m, 3H), 7.52-7.51 (m, 2H), 6.57 (d, J = 10.0 Hz, 2H), 6.16 (d, J = 10.0 Hz, 2H), 4.58 (s, 2H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.4, 170.2, 159.8, 148.6, 143.1, 141.4, 136.0, 135.9, 131.2, 130.3, 129.8, 127.1, 124.7, 124.0, 88.2 and 65.9. HRMS (ESI) m/z (%) for C₂₂H₁₆N₅O₅ (M+H): Calcd. 430.1151; Found 430.1144.

4-(3-(5-Chloro-2-nitrophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (1f). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.95 (d, J = 2.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.56-7.49 (m, 6H), 6.52 (d, J = 10.0 Hz, 2H), 6.22 (d, J = 10.0 Hz, 2H), 4.54 (s, 2H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.3, 170.0, 157.0, 142.6, 140.9, 138.1, 135.8, 131.5, 130.9, 130.4, 130.3, 130.2, 129.7, 125.4, 125.3, 124.6, 88.4 and 64.9. HRMS (ESI) m/z (%) for C₂₂H₁₅ClN₅O₅ (M+H): Calcd. 464.0762; Found 464.0749. **4-(3-(4-Chlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione** (1g). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.90 (d, *J* = 4.4 Hz, 2H), 7.56-7.49 (m, 8H), 7.41(d, *J* = 8.4Hz, 3H), 6.55(d, *J* = 10.0 Hz, 2H), 6.14(d, *J* = 10.0 Hz, 2H), 4.57(s, 2H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.4, 170.2, 160.8, 142.4, 141.5, 136.0, 135.8, 131.0, 130.0, 129.6, 128.8, 128.3, 127.6, 124.7, 88.0 and 65.9. HRMS (ESI) m/z (%) for C₂₂H₁₆ClN₄O₃ (M+H): Calcd. 419.0911; Found 419.0908.

4-(3-(2,4-Dichlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (1h). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.81(d, *J* = 8.0 Hz, 1H), 7.55-7.51(m, 8H), 7.34-7.31(m, 1H), 6.58 (d, *J* = 10.0 Hz, 2H), 6.18 (d, *J* = 10.0 Hz, 2H), 4.57(s, 2H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.4, 170.1, 159.5, 142.0, 141.4, 136.0, 133.7, 132.0, 131.2, 130.6, 130.1, 129.7, 129.5, 127.4, 127.1, 124.6, 88.3 and 66.0. HRMS (ESI) m/z (%) for $C_{22}H_{15}Cl_2N_4O_3$ (M+H): Calcd.453.0521; Found 453.0512.

4-(1-Phenyl-3-p-tolyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro- [4.5]deca-6,9-diene-3,8-dione (1i). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.94(d, J = 8.0 Hz, 2H), 7.56-7.50 (m, 5H), 7.24 (d, J = 8.0 Hz, 4H), 6.55(d, J = 10.0 Hz, 2H), 6.13(d, J = 10.0 Hz, 2H), 4.56 (s, 2H), 2.39 (s, 3H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm):183.4, 170.2, 161.8, 142.1, 141.6, 140.0, 136.1, 130.9, 129.8, 129.5, 129.3, 127.0, 126.1, 124.7, 88.0, 65.9 and 21.4. HRMS (ESI) m/z (%) for C₂₃H₁₉N₄O₃ (M+H): Calcd.399.1457; Found 399.1458.

4-(3-(4-Methoxyphenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (1j). ¹H-NMR (CDCl₃, 400MHz) δ (ppm): 7.98 (d, *J* = 8.8 Hz, 2H), 7.54-7.50 (m, 5H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 10.0 Hz, 2H), 6.13 (d, *J* = 10.0 Hz, 2H), 4.56 (s, 2H), 3.86 (s, 3H). ¹³C-NMR (CDCl₃, 100MHz) δ (ppm): 183.4, 170.3, 161.7, 160.9, 141.7, 141.6, 136.2, 130.9, 129.8, 129.6, 127.8, 124.7, 122.5, 113.9, 88.1, 65.9 and 55.3. HRMS (ESI) for $C_{23}H_{19}N_4O_4$ (M+H): Calcd. 415.1406; Found 415.1415.

4-(1-(4-Methoxyphenyl)-3-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-diene-3,8-dione (1k). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 3.89 (s, 3H), 4.55 (s, 2H), 6.15 (d, J = 10.0 Hz, 2H), 6.85 (d, J = 10.0 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 7.44-7.41 (m, 5H), 8.06-8.03 (m, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 183.5, 170.3, 161.6, 160.5, 141.8, 141.8, 130.9, 129.9, 129.8, 128.9, 128.6, 126.4, 126.3, 114.6, 88.0, 66.0 and 55.6. HRMS (ESI) for C₂₃H₁₉N₄O₄ (M+H): Calcd. 415.1406; Found 415.1396.

4-(1-Phenyl-3-(thiophen-2-yl)-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione (11). Gray solid, m.p. 136-138 °C. ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 7.68 (d, J = 3.6 Hz, 1H), 7.55-7.50 (m, 5H), 7.38 (d, J = 4.8 Hz, 1H), 7.10 (t, J = 4.0 Hz, 1H), 6.54 (d, J = 10.0 Hz, 2H), 6.13 (d, J = 10.0 Hz, 2H), 4.55 (s, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 183.4, 170.3, 158.0, 142.2, 141.5, 135.9, 132.5, 131.0, 130.0, 129.6, 127.7, 127.3, 127.1, 124.8, 88.1 and 66.0. HRMS (ESI) for C₂₀H₁₅N₄O₃S (M+H): Calcd. 391.0865; Found 391.0866.

4-(3-(Furan-2-yl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro- [4.5]deca-6,9-diene-3,8-dione (1m). White solid, m.p. 149-151 °C. ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 7.55-7.48 (m, 7H), 7.00 (d, J = 2.8 Hz, 1H), 6.54-6.51(m, 2H), 6.11(d, J = 10.0 Hz, 2H), 4.56 (s, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 183.2, 170.3, 154.9, 145.0, 143.7, 142.2, 141.4, 135.7, 131.0, 130.0, 129.5, 124.7, 88.0 and 65.8. HRMS (ESI) for C₂₀H₁₅N₄O₄ (M+H): Calcd. 375.1093; Found 375.1094.

4-(1-(3-Chlorophenyl)-3-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-diene-3,8-dione (1n). Gray solid, m.p. 168-170 °C. ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 8.04-8.02 (m, 2H), 7.56-7.42 (m, 7H), 6.64 (d, J = 10.0 Hz, 2H), 6.20 (d, J = 10.0 Hz, 2H), 4.57 (s, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 183.4, 170.2, 161.9, 142.5, 141.6, 137.3, 135.4, 131.2, 130.6, 130.1, 130.0, 129.6, 128.7, 126.4, 125.0, 122.5, 88.2 and 65.9. HRMS (ESI) for C₂₂H₁₆ClN₄O₃ (M+H): Calcd. 419.0911; Found 419.0907.

7-Bromo-4-(1,3-diphenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-diene-3,8-dione (10). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 8.06 (m, 2H), 7.58-7.57 (m, 3H), 7.52-7.49 (m, 2H), 7.46-7.43 (m, 3H), 6.81 (d, *J* = 10.0 Hz, 1H), 6.73 (dd, *J* = 10.0 and 2.8 Hz, 1H), 6.30 (d, *J* = 10.0 Hz, 1H), 4.56 (s, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 176.4, 169.8, 161.9, 142.4, 142.3, 136.0, 130.1, 130.0, 129.8, 129.6, 128.6, 127.4, 126.3, 124.8, 89.6 and 65.9. HRMS (ESI) for C₂₂H₁₆BrN₄O₃ (M+H): Calcd. 463.0406; Found 463.0402.

4-(3-(3-Chlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-diene-3,8-dione (**1p**). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 8.09 (s, 1H), 7.96 (d, *J* = 6.9 Hz, 1H), 7.56-7.53 (m, 5H), 7.40-7.35 (m, 3H), 6.57 (d, *J* = 9.6 Hz, 2H), 6.16 (d, *J* = 9.6 Hz, 2H), 4.58 (s, 2H). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 183.1, 170.3, 160.7, 142.5, 141.6, 136.1, 134.7, 131.7, 131.1, 130.1, 130.0, 129.9, 129.7, 126.5, 124.8, 124.4, 88.2 and 66.0. HRMS (ESI) for $C_{22}H_{16}CIN_4O_3$ (M+H): Calcd. 419.0911, 421.0881; Found 419.0906, 421.0881.

4-(1,3-Diphenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]- deca-6,9-dien-8-one (2a). Pale yellow solid, m.p. 119-121 °C. ¹H-NMR (CDCl₃) δ (ppm): 8.05-8.03 (m, 2H), 7.41-7.37 (m, 8H), 6.49 (d, J = 10.4 Hz, 2H), 5.90 (d, J = 10.0 Hz, 2H), 4.27 (t, J = 6.0 Hz, 2H), 3.88(t, J = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.8, 159.8, 153.5, 143.5, 137.5, 130.6, 129.5, 129.3, 128.9, 128.7, 128.5, 126.2, 125.4, 87.7, 66.0 and 50.0. HRMS (ESI) for C₂₂H₁₉N₄O₂ (M+H): Calcd. 371.1508; Found 371.1507.

4-(1-Phenyl-3-(p-tolyl)-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro- [4.5]deca-6,9-dien-8-one (2b). Pale yellow solid, m.p. 142-144 °C. ¹H-NMR (CDCl₃) δ (ppm): 7.93 (d, *J* = 8.0 Hz, 2H), 7.46-7.37 (m, 5H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 10.0 Hz, 2H), 5.88 (d, *J* = 10.0 Hz, 2H), 4.25 (t, *J* = 6.4 Hz, 2H), 3.88 (t, *J* = 6.4 Hz, 2H). ¹³C-NMR (CDCl₃,

100MHz) δ (ppm): 184.8, 159.8, 143.5, 139.2, 137.5, 131.9, 129.3, 128.7, 127.8, 126.0, 125.4, 120.2, 87.7, 66.0, 49.9, 29.6 and 21.3. HRMS (ESI) for C₂₃H₂₁N₄O₂ (M+H): Calcd. 385.1665; Found 385.1668.

4-(3-(4-Methoxyphenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-dien-8-one (2c). Pale yellow solid, m.p. 118-121 °C. ¹H-NMR (CDCl₃) δ (ppm): 7.97 (d, *J* = 8.8 Hz, 2H), 7.46-7.37 (m, 5H), 6.94 (d, *J* = 9.2 Hz, 2H), 6.49 (d, *J* = 10.0 Hz, 2H), 5.90 (d, *J* = 10.0 Hz, 2H), 4.26 (t, *J* = 6.0 Hz, 2H), 3.87 (t, *J* = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.8, 160.5, 159.6, 153.3, 143.5, 137.5, 129.4, 128.9, 128.6, 127.6, 125.4, 123.3, 113.8, 87.7, 66.0, 55.2 and 49.9. HRMS (ESI) for $C_{23}H_{21}N_4O_3$ (M+H): Calcd. 401.1614; Found 401.1609.

4-(3-(4-Chlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-dien-8-one (2d). Gray solid, m.p. 143-146 °C. ¹H-NMR (CDCl₃) δ (ppm): 7.99 (d, J = 8.4 Hz, 2H), 7.47-7.29 (m, 7H), 6.50 (d, J = 10.0 Hz, 2H), 5.94 (d, J = 10.0 Hz, 2H), 4.28 (t, J = 6.0 Hz, 2H), 3.87 (t, J = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.8, 158.8, 153.5, 143.4, 137.4, 135.1, 129.5, 129.2, 129.0, 128.9, 128.7, 127.5, 125.4, 87.7, 66.0 and 49.8. HRMS (ESI) for C₂₂H₁₈CIN₄O₂ (M+H): Calcd. 405.1118; Found 405.1103.

4-(3-(3-Chlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-dien-8-one (2e). Gray solid, m.p. 185-187 °C. ¹H-NMR (CDCl₃) δ (ppm): 8.06(s, 1H), 7.92-7.90 (m, 1H), 7.45-7.40 (m, 5H), 7.36-7.35 (m, 2H), 6.47 (d, *J* = 10.0 Hz, 2H), 5.90 (d, *J* = 10.0 Hz, 2H), 4.27 (t, *J* = 6.0 Hz, 2H), 3.88 (t, *J* = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.7, 158.6, 153.7, 143.4, 132.4, 129.5, 129.3, 129.0, 128.9, 126.2, 125.4, 124.2, 87.7, 66.0 and 50.0. HRMS (ESI) m/z (%) for C₂₂H₁₇ClN₄NaO₂ (M+Na): Calcd. 427.0938; Found 427.0944.

4-(3-(2,4-Dichlorophenyl)-1-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5] deca-6,9-dien-8-one (2f). Pale yellow solid, m.p. 130-132 °C. ¹H-NMR (CDCl₃) δ (ppm): 7.83 (d, *J* = 8.0 Hz, 1H), 7.49-7.40 (m, 6H), 7.30 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.50 (d, *J* = 10.0 Hz, 2H), 5.93 (d, *J* = 10.0 Hz, 2H), 4.26 (t, *J* = 6.0 Hz, 2H), 3.84 (t, *J* = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.8, 157.6, 152.9, 143.4, 137.2, 135.2, 133.4, 131.8, 130.5, 129.5, 129.1, 128.9, 128.1, 127.0, 125.3, 87.8, 66.0 and 49.8. HRMS (ESI) for C₂₂H₁₇Cl₂N₄O₂ (M+H): Calcd. 439.0729; Found 439.0717.

4-(1-(3-Chlorophenyl)-3-phenyl-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-dien-8-one (2g). Pale yellow solid, m.p. 136-138 °C. ¹H-NMR (CDCl₃) δ (ppm): 8.05-8.03 (m, 2H), 7.53 (s, 1H), 7.45-7.38 (m, 4H), 7.36-7.35 (m, 2H), 6.51(d, *J* = 10.0 Hz, 2H), 5.94 (d, *J* = 10.0 Hz, 2H), 4.30 (t, *J* = 6.0 Hz, 2H), 3.94 (t, *J* = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.4, 160.1, 153.8, 143.3, 138.4, 135.0, 130.6, 129.5, 129.0, 128.6, 128.5, 126.2, 125.3, 123.2, 88.0, 66.0 and 50.2. HRMS (ESI) for $C_{22}H_{18}CIN_4O_2$ (M+H): Calcd. 405.1118; Found 405.1120.

4-(1-Phenyl-3-(thiophen-2-yl)-1H-1,2,4-triazol-5-yl)-1-oxa-4-azaspiro[4.5]deca-6,9-dien-8-one (2h). Pale yellow solid, m.p. 132-134 °C. ¹H-NMR (CDCl₃) δ (ppm): 7.62(m, 1H), 7.43-7.38 (m, 5H), 7.34-7.32 (m, 1H), 7.09-7.07 (m, 1H), 6.47 (d, J = 10.0 Hz, 2H), 5.91(d, J = 10.0 Hz, 2H), 4.25 (t, J = 6.0 Hz, 2H), 3.86 (t, J = 6.0 Hz, 2H). ¹³C-NMR (CDCl₃) δ (ppm): 184.7, 156.2, 153.3, 143.3, 137.3, 133.5, 129.0, 128.8, 127.6, 126.6, 126.4, 125.6, 87.7, 66.0 and 50.0. HRMS (ESI) for C₂₀H₁₇N₄O₂S (M+H): Calcd. 377.1072; Found 377.1076.

Cell Proliferation Assay.¹⁸ Breast cancer cell lines, MDA-MB-231 and MCF-7, the cervical cancer cell line, HeLa, and the non-small cell lung carcinoma cell line, cell lines were purchased from ATCC. A549 were routinely cultured in DMEM medium supplemented with 10% FBS, 4 mM glutamine, 1 mM sodium pyruvate, 100 IU/mL penicillin, 100 μ g/mL streptomycin and 0.25 μ g/mL amphotericin. Cultures were maintained in 5% CO₂ at a temperature of 37°C. The cells were plated in 24-well plates at a density of 20,000 per well in 10% FBS DMED medium. The cells were then treated with Doxorubicin, or synthesized triazole-spirodienone conjugates separately at 5 different doses ranging from 0.01 mM to 1 nM for 5 days, while equal treatment volumes of DMSO were used as vehicle control. Cell numbers were counted with a cell viability analyzer (BeckmaneCoulter). The ratio of drug treated viable cell numbers to vehicle treated viable cell numbers were defined as percentage viability. IC₅₀ values were obtained from dose response curves for each tested compound.

MCF-10A, the normal mammary epithelial cells, were cultured in 50 : 50 DMEM/Hams F12, with, 2.5 mM Lglutamine, 15 mM HEPES, 0.5 mM sodium pyruvate, 1.2 g/L sodium bicarbonate, 20 ng/ml human Epidermal Growth Factor (hEGF), 100 ng/ml cholera toxin, 10 µg/ml bovine insulin, 500 ng/ml hydrocortisone and 5% horse serum and grown at 5% CO₂, 37°C, and 100% humidity. The cells were plated in 24-well plates at a density of 20,000 per well in 10% FBS DMED medium. The cells were then treated with Doxorubicin, or compounds **1a**, **1d-f** and **1i-k** separately at two doses of 10 µM and 1 µM for 5 days, while equal treatment volumes of DMSO were used as vehicle control.

Cell Apoptosis Assay.¹⁷ Cell apoptosis induced by triazole-spirodienone conjugates was detected by using the CellEvent[™] Caspase-3/7 Green ReadyProbes[®] Reagent (ThermFisher Scientic Company). HeLa cells were grown on cover glasses in a 24-well plate at a concentration of 50,000 cells/well for 24 h incubation at 37 °C. HeLa cells were induced with **1b**, **1i**, **1f**, **1p** and doxorubicin at 1.0 µM for an additional 24 h, while equal treatment volumes of DMSO were used as vehicle control. CellEvent[™] Caspase-3/7 Green ReadyProbes[®] Reagent (2 drops per mL of media) was added. After 40 min incubation at room temperature in the darkness, the stained cells were observed and taken pictures using fluorescence microscopy.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compounds

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1a.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1b.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1c.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1d.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1e.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1f.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1g.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1h.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1i.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1j.

15

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 11.

17

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1m.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 1P.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 2d.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 2e.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 2f.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 2g.

¹H-NMR (CDCl₃) and ¹³C-NMR (CDCl₃) of compound 2h.

dexisiones al cocis 2010-20-27 Putte laquence: x2put

LF121116 H1 CBC13 2412-11-24 Pulse Sequence: signal

UFIZIINF HI COCIS 2012-11-8 Pulse Sequence: s2pul

é.

ŝ

10

.

8 7 1.72 1.45 1.45 1.78.66 2.56 4 2.4973 2.49 2.52

3

ż

8 ppm

i

LF120413 N1 CDC13 2012-4-17 Pulse Deponse: s2pul

LFID0514 H1 COC13 1012-5-16 Pulse Exquence: sign1

Ę

HPLC Purity Data for Compounds

Compound	Retention time (min)	Purity from integration
1a	4.37 ^a	98.4
1b	4.38ª	96.7
1c	4.37ª	99.8
1d	3.87ª	95.3
1e	4.35ª	92.9
1f	4.25ª	99.3
1g	4.75ª	93.8
1h	4.74ª	98.3
1i	4.51ª	99.3
1j	4.35ª	99.6
1k	4.39ª	99.1
11	4.19ª	98.0
1m	3.98ª	97.5
ln	4.66ª	95.6
10	4.10 ^a	98.3
1p	5.74ª	97.2
2a	4.13ª	94.6
2b	4.73ª	98.8

Table 1. HPLC Purity Data for Compounds1a-2i.

2c	4.52ª	99.8
2d	4.96 ^a	98.0
2e	4.54ª	98.7
2f	5.04ª	97.0
2g	4.42ª	98.1
2h	4.33ª	97.3
2i	4.08ª	98.9

a. The mobile phase was CH₃OH,eluted isocratically at a flow rate of 0.5mL/min at room over 10 min, at room temperature and UV detection at 254 nm.

HPLC traces of compound 1a.

HPLC traces of compound 1b.

HPLC	oflb				
N*	t(min)	Compuesto	Area	co	Areañ
1	1.550		21	0.00	0.07284
2	3.042		22	0.00	0.07664
3	4.380		27944	0.00	96.69
4	5.013		531	0.00	1.837
5	5.921		101	0.00	0.3479
6	8.422		281	ref	0.9735

HPLC traces of compound 1c.

HPLC traces of compound 1d.

HPLC traces of compound 1e.

HPLC traces of compound 1f.

HPLC (of 1f					
N	t (min)	Compuesto	Area	co	Area%	
1	4.249		19632	0.00	99.26	
2	6.423		66	0.00	0. 3339	
3	8.424		30	0.00	0. 1522	
4	8.520		51	ref	0, 2603	

HPLC traces of compound 1h.

HPLC	oflh					
N°	t(min)	Compuesto	Area	cO	Area%	
1	0.216		26	0.00	0. 1201	
2	2.532		36	0.00	0. 1654	
3	4.740		21572	0.00	98.3	
4	6.280		67	0.00	0. 3067	
5	6.743		77	0.00	0. 3495	
6	8.320		92	0.00	0.4208	
7	9.163		74	ref	0. 339	

N°	t(min)	Compuesto	Area	C()	Area%	
1	4.508		32998	0.00	99.32	
2	5.109		21	0.00	0.06253	
3	5.158		26	0.00	0.07697	
4	5.968		180	ref	0.5428	

HPLC traces of compound 1i.

HPLC traces of compound 1j.

N	t(min)	Compuesto	Area	co	Area%
1	0.870		38	0.00	0.07662
2	3.876		152	0.00	0.3058
3	4.351		49663	ref	99.62

N	t(min)	Compuesto	Area	cO	Area%
1	1.193		46	0.00	0. 1627
2	3.667		141	0.00	0. 4992
3	4.393		28004	0.00	99.06
4	6.778		78	ref	0.2758

HPLC traces of compound 11.

N	t(min)	Compuesto	Area	c0	Area%
1	3.642		50	0.00	0. 1872
2	4.188		26032	0.00	98.03
3	4.713		311	0.00	1.172
4	6.976		162	ref	0.6091

HPLC	oflm				
N*	t(min)	Compuesto	Area	c0	Areañ
1	0.096		53	0.00	0. 40 92
2	1.969		35	0.00	0.2683
3	2.233		35	0.00	0.2725
4	3.977		12559	0.00	97.52
5	4.939		69	0.00	0. 5394
6	7.461		128	ref	0.993

HPLC traces of compound **1n**.

HPLC	ofln				
Nº	t(min)	Compuesto	Area	co	Area%
1	1.535		121	0.00	0.4943
2	4.657		23490	0.00	95.64
3	5.694		78	0.00	0.3166
4	6.219		166	0.00	0.6777
5	7.448		99	0.00	0.4018
6	9.734		607	ref	2.459

HPLC traces of compound 10 .	
-------------------------------------	--

Nª	t(min)	Compuesto	Area	c0	Area%
1	0.389		14	0.00	0.09174
2	0.911		39	0.00	0.2619
3	4.104		14578	0.00	98.34
4	5.440		44	0.00	0.2953
5	7.571		44	0.00	0.2995
6	8,602		106	ref	0.714

HPLC traces of compound **1P.**

HPLC of 1P N°	t (min)	Compuesto	Area	CO	Area%
1	2.605		30	0.00	1.409
2	4.381		24	0.00	0.9809
3	5.744		4546	0.00	97.25
4	9.193		8	ref	0.3 579

HPLC traces of compound 2a.

HPLC traces of compound 2b.

N	t(min)	Compuesto	Area	c0	Area%	
1	3,972		73	0.00	0.332	
2	4.728		31137	0.00	98.78	
3	6.819		39	0.00	0.1229	
4	7.880		40	0.00	0. 1261	
5	8.169		22	0.00	0.07122	
6	9.443		81	ref	0.257	
				8(t)		
		14 A	3681	Л	-	- 1880 8.100 9.443

HPLC of	2c t(min)	Compuesto	Area	cO	Area%	
1	4. 520		16365	0.00	99.84	
	4.367		25	ref	0.1525	
				105		~
				A		
						~O~ \$°
				11		99.84% S
, 				N		1 1

HPLC traces of compound 2c.

HPLC traces of compound 2d.

HPLC of 2d								
N	t(min)	Compuesto	Area	c0	Area%			
1	0.413		63	0.00	0. 1885			
2	4. 521		613	0.00	1.84			
3	4.961		32638	ref	97.97			

N°	t (min)	Compuesto	Area	c ()	%Area
1	0.764		398	0.00	0.8204
2	4.543		47903	0.00	98.77
3	6.823		135	0.00	0.2776
4	8.279		67	ref	0.1386
		4.513			

HPLC traces of compound 2e.

HPLC traces of compound 2f.

N ⁴	0121 t(min)	Computato	Area	co	Areal
1	3.970		92	0.00	0. 3767
2	4.518		587	0.00	2.396
3	5.042		237 56	0.00	96.95
4	7.371		33	0.00	0.1343
5	7.707		35	ref	0.1416

HPLC traces of compound 2g.

HPLC traces of compound 2h.

HPLC	HPLC of 2h									
Nº	t(min)	Compuesto	Area	CO.	Areali					
1	0.729		122	0.00	0. 22 55	- 222				
2	1.318		145	0.00	0. 26.83					
3	2.203		110	0.00	0.2042					
4	4.330		52460	0.00	97.27					
5	6.196		675	0.00	1.252					
6	9.750		424	ref	0.7856					

HPLC traces of compound 2i.

HPLC	of 2i					
N	t(min)	Compuesto	Area	co	Area%	
1	0.357		18	0.00	0.172	
2	1.829		20	0.00	0.1891	
3	4.079		10384	0.00	98.94	
4	4.693		21	0.00	0.2029	
5	5 434		39	0.00	0 3742	

