Supporting Information of:

Ultra-fast and higher sensitive enzyme-free glucose biosensing on nickel-nickel

oxide core-shell electrode

Halima Begum, Mohammad Shamsuddin Ahmed, Seungwon Jeon*

Department of chemistry and institute of basic science, Chonnam National University, Gwangju

500-757, Republic of Korea. Tel.: +82 62 530 0064; fax: +82 62 530 3389.

*Corresponding author: swjeon3380@naver.com

1. Electrochemical and Instrumental Characterization

All electrochemical experiments were performed using a three-electrode potentiostat (CHI 700C electrochemical workstation, CH instrument, USA). A standard three-electrode setup was used with a GCE working electrode (geometric area: 0.0707 cm²), a Pt wire and an Ag/AgCl were used as counter electrode and reference electrode, respectively. Electrochemical impedance spectroscopy (EIS) was performed with a Versa State 3, manufactured by Metek, USA. All glucose sensing experiments were performed in an Ar purged 0.1 M NaOH in deionized water solution at room temperature (RT). A commercial glucose meter, ACCU-CHEK Performa, was used for glucose determination. The surface morphology of all NiNiO core-shell was characterized by a JSM-7500F JEOL for field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDX). Transmission electron microscopy (TEM) images and were obtained by TECNAI model FI-20 (FEI, Netherland). X-ray photoelectron spectroscopic (XPS) spectrum was gained using a MultiLab 2000 with a 14.9 keV Al K X-ray

source. X-ray diffraction (XRD) spectra were carried out on a Rigaku D/max-2500, using filtered Cu Kα radiation.

2. Treatment of human urine

Human urine was obtained from a healthy volunteer. 50 mL was centrifuged at 3287 g (7000 rpm) for 10 min at room temperature (~25 °C). The urine sample was analyzed immediately and was stored in refrigerator at low temperature until analysis.

Figure S1: CVs of NiNiO electrodeposition onto GCE in Ar-pursed 2.6 mg ml⁻¹ NiCl₂.6H₂O/10 mM HCl solution for 20 cycles at 50 mV s⁻¹ scan rate (a); enlarged CVs at low overpotential (b) and high overpotential (c).

Figure S2: The plot of Ni and O elements with their ratio vs. CV cycles for 10, 20 and 30 CV cycles deposited NiNiO core-shell based on numerical analysis using EDX.

Figure S3: CVs at 50 mV s⁻¹ scan rate in Ar-saturated 0.1 M NaOH on 5, 10, 15, 20, and 30 CV cycles deposited NiNiO core-shell-modified GCEs at 50 mV s⁻¹ scan rate (a) and the plots of I_{pa} and E_{pa} as the function of CV cycles (b).

Figure S4: DPVs were recorded in Ar-saturated 0.1 M NaOH on NiNiO/GCE with sequential addition of glucose (a), plot of peak current vs. C_{Glu} with 5% error bar (b).

Figure S5: Amperometric response on NiNiO/GCE upon addition of 50 μ M glucose in Arsaturated 0.1 M NaOH at different applied potentials for applied potential optimization.

Figure S6: Enlarged CA response on NiNiO/GCE upon addition of glucose in Ar-saturated 0.1 M NaOH at an applied potential of 0.5 V.

Figure S7: Enlarged CVs on NiNiO/GCE at 50 mV s⁻¹ scan rate in Ar-saturated 0.1 M NaOH with subsequent addition of 200 µL TW, 200 µL Ur and 1 mM glucose.

Figure S8: Long term stability evaluation of a single NiNiO core-shell-modified GCE over 33 days with 5% error bar (a), reproducibility test on five different NiNiO/GCEs for the detection of 1 mM glucose with 2.2% RSD (inset), the repeatability tested on a single NiNiO/GCE with 0.64 % RSD (b) and in five different glucose sample solutions with 0.68 % RSD (inset); all tests were evaluated by CV technique in Ar-saturated 0.1 M NaOH.

Figure S9: The temperature (a) and NaOH concentration effect (b) on the NiNiO core-shellmodified GCE in Ar-saturated 1 mM glucose containing 0.1 M (a) and 0.01-0.5 M (b) NaOH solution.

Table S1: Glucose detection in urine by a commercial glucose sensor and NiNiO core-shell

 modified GCE biosensor method.

Urine	Added glucose	Glucometer	Our sensor	Recovery
Samples	(mM)	(mM)	(mM)	(%)
1	1.00	1.01	1.02	102
2	3.00	2.98	2.99	99.7
3	5.00	4.98	4.97	99.4