Fe3O4@SiO2-MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1,8-dioxo-decahydroacridine derivatives

Mahtab Kiani^{a,*}, Mohammad Mohammadipour^b

^aYoung Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran

^bDepartment of Chemistry, Semnan University, Semnan 35131-19111, Iran

Abstract

Molybdic acid-functionalized silica-coated nano-Fe₃O₄ particles (Fe₃O₄@SiO₂-MoO₃H) have been prepared as a novel heterogeneous acid catalyst using a facile process. The material was subsequently identified as an efficient catalyst for the synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent free conditions. The catalyst could be readily recovered using a simple external magnet and reused several times without any significant loss in activity. Short reaction time, excellent yields and simple work-up are the advantages of this procedure.

Keywords: Fe₃O₄@SiO₂-MoO₃H; Novel heterogeneous acid catalyst; 1,8-Dioxodecahydroacridine; Solvent free conditions; Excellent yields

Fig. 1. ¹H NMR of (7a).

9-(4-bromophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (7c)

Fig. 2. ¹H NMR of (**7c**).

9-(p-tolyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (7d)

Fig. 4. ¹H NMR of (**7d**).

Fig. 5. ¹³C NMR of (**7d**).

Fig. 6. ¹H NMR of (**8a**).

Fig. 7. ¹³C NMR of (**8a**).

9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8b)

Fig. 8. ¹H NMR of (**8b**).

9-(4-fluorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8e)

Fig. 9. ¹H NMR of (8e).

Fig. 10. ¹³C NMR of (8e).

9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8f)

Fig. 11. ¹H NMR of (**8f**).

9-(4-bromophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8h)

3,3,6,6-tetramethyl-9-(4-nitrophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8i)

Fig. 13. ¹H NMR of (**8i**).

Fig. 14. ¹H NMR of (**8j**).

3,3,6,6-tetramethyl-9-(naphthalen-2-yl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (8k)

