DBN-based ionic liquids for wool keratin dissolution with high capability

Xue Liu^a, Yi Nie^{b,*}, Xianglei Meng^b, Zhenlei Zhang^b, Xiangping Zhang^b, Suojiang Zhang^{b,*}

^aCollege of Chemistry and Chemical Engineering, Qufu Normal University,

Shandong, 273165, China.

^bBeijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of

Green Process and Engineering, State Key Laboratory of Multiphase

Complex Systems, Institute of Process Engineering, Chinese Academy

Of Sciences, Beijing, 100190, China.

Supplementary Information

Synthesis and Characterization of ionic liquids

Table S1. Electronic spray mass spectrum analysis and water content of IL			
ILs	cation(m/z)	negion(m/z)	water
			content(ppm)
[DBNE]DEP	153.1391	153.0311	964
[Emim]DEP	111.0917	153.0311	1310
[DBNM]DMP	139.1213	124.9995	1805
[Emim]DMP	111.0901	124.9992	641
[DBNH]OAc	125.1078	/	1140

¹H-NMR Analysis of ILs: (600 MHz, DMSO)

[DBNE]DEP: δ_{ppm} = 3.65 (t, 2H), 3.58(m, 4H), 3.43(m, 2H), 3.39(m, 2H), 3.03(t, 2H), 2.04(m, 2H), 1.98(m, 2H), 1.17(t, 3H), 1.05(t, 6H)

 $[DBNE]DMP: \delta_{ppm} = 3.65 (m, 2H), 3.37(t, 2H), 3.33(t, 2H), 3.24(d, 3H), 3.10(s, 6H), 3.00(t, 2H), 2.03(m, 2H), 1.98(m, 2H)$ $[DBNH]OAc: \delta_{ppm} = 3.57 (t, 2H), 3.35(t, 2H), 3.31(m, 2H), 3.28(t, 2H), 3.14(t, 2H), 2.80(t, 2H), 2.20(m, 2H), 2.02(m, 2H), 1.90(m, 2H), 1.80(d, 3H), 1.74(s, 3H)$

 $[Emim] DEP: \delta_{ppm} = 9.79 (s, 1H), 7.95(t, 1H), 7.85(t, 1H), 4.25(q, 2H), 3.91(s, 3H), 3.66(m, 4H), 1.43(t, 3H), 1.08(t, 6H)$ $[Emim] DMP: \delta_{ppm} = 9.58 (s, 1H), 7.88(t, 1H), 7.82(t, 1H), 4.22(m, 3H), 3.88(s, 2H), 3.29(d, 6H), 1.42(t, 3H)$

Recycling of ionic liquids

Note: All experiments are conducted at 393 K with 8% wool keratin

Fig. S1. Dissolution process of wool fiber in [DBNE]DEP after 3 h at the first time (a), second time (b), third time (c),

fourth time (d), fifth time (e) and the structures of ionic liquid after every recycle.

Fig. S2 Electronic spray mass spectra of cation (a) and anions (b) of 5th recycled IL.

Fig. S3 FT-IR spectra of 5th recycled IL and before recycled IL.

Fig.S4 TGA curves of the regenerated keratins from 5th recycled and 1th recycled ILs solutions.