Double dimensionally ordered nanostructures: Toward

multifunctional reinforcing nanohybrid for epoxy resin

Ruhua Zha,[†] Ming Chen,[†] Tuo Shi,[‡] Reddeppa Nadimicherla,[‡] Tongwu Jiang,[†] Zongwen Zhang,[†] Min Zhang[§]

⁺ College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang

464000, P. R. China.

[‡] Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong

University of Science and Technology, Wuhan 430074, P. R. China.

[§] Henan Collaborative Innovation Center for Energy-Saving Building Materials, Xinyang

Normal University, Xinyang 464000, P. R. China.

Fig. S1 Schematic illustration showing the fabrication of TiO₂/MMT/EP nanocomposites.

Fig. S2 Molecular structure of E-51 and used curing agent MTHPA.

Table S1. Nanocomposites content

Nanocomposites	Content (phr)	Nano-TiO ₂ ball cactus (phr)	MMT (phr)
TiO ₂ /MMT/epoxy nanocomposites	2	1	1
	4	2	2
	5	2.5	2.5
	6	3	3
	8	4	4

Table S2. Tensile mechanical properties of neat epoxy and $TiO_2/MMT/EP$ nanocomposites

Sample	Tensile strength [MPa]	Young's modulus [GPa]	Elongation at break [%]
0	40.40 ± 3.18	0.50 ± 0.18	9.98±0.41
2	85.74±2.83	2.97 ± 0.12	10.28 ± 0.22
4	97.42 ± 0.89	3.06 ± 0.32	10.44 ± 0.37
5	98.84 ± 2.06	3.36 ± 0.09	10.52 ± 0.18
6	93.38±3.11	3.00 ± 0.25	10.46 ± 0.16
8	76.62 ± 1.21	2.96 ± 0.39	9.59 ± 0.35