Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Composition-Controlled Synthesis of Ni2-xCoxP Nanocrystals as

Bifunctional Catalysts for Water Splitting

Qingshuang Liang, Keke Huang, Xiaofeng Wu, Xiyang Wang, Wei Ma, Shouhua Feng*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Figure S1. The XRD pattern of as-prepared nanoparticles obtained after the reaction at 250 $^{\circ}$ C for 2h without adding of NaBH₄.

Figure S2. EDS results of nanoparticles isolated from the reaction at different temperatures without adding of $NaBH_4$.

Figure S3. EDS results of nanoparticles isolated from the reaction at different temperatures with the adding of $NaBH_4$.

Figure S4 EDS spectra of as-prepared Ni_{2-x}Co_xP NCs with different compositions.

 $\label{eq:figureS5} FigureS5.~(a) The polarization curves of Ni_{2-x}Co_xP~NCs~with~different~Co/Ni~ratios~in~1.0~M~KOH~for~HER.~(b)~Corresponding~Tafel~plots.$

Table S1: Surface compositions for $Ni_{2-x}Co_xP$ nanoparticle compositions as assessed from XPS data.

Nominal Bulk	Surface	Surface Co/Ni Mole	Surface P/(Ni+Co)
Composition	Composition	Ratio	Mole Ratio
Ni ₂ P	Ni _{0.27} P		3.7
Ni _{1.5} Co _{0.5} P	Ni _{0.23} Co _{0.12} P	0.52	2.9
NiCoP	Ni _{0.17} Co _{0.33} P	1.94	2
Ni _{0.5} Co _{1.5} P	Ni _{0.05} Co _{0.2} P	4	4
Co ₂ P	Co _{0.3} P		3.3