Supplementary Material

One-Step Fabrication and Characterization of Poly(vinyl alcohol)/SilverHybrid Nanofiber Matby Electrospinning

forMultifunctional Applications

Chun-Gang Yuan*, Shiwei Guo, Jian Song, Can Huo, Yukai Li, Bing Gui, Xianmei Zhang

School of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China

Corresponding author: Chun-Gang Yuan Tel: +86-312-7525512 Fax:+86-312-7525512 Email: chungangyuan@hotmail.com

Figure captions

Figure S1 Photo images of the prepared fiber mat (a) before and (b) after thermal treatment

Figure S2 EDS spectra of the composite mat at (a) square area and (b) microsphere spots

Figure S3 ATR-FTIR spectra of initial and thermal treated Ag-PVA mat

Figure S4 Effect of temperature on the adsorption efficiency (C_0=20ng/mL , V=50 mL, m=50mg)

Figure S5 Effect of coexisting ions on the adsorption efficiency (V=50mL, m=50mg, 25°C)

Figure S6 Regeneration and recovery of the used mat (V=50mL, m=50mg, C (HCl and

HNO₃)=10% (v/v), V(HCl and HNO₃)= 5.0mL, 25°C)

Figure S7 Silver release from the mat during use (V=50mL, m=50mg, 25°C)

Figure S8 A.pseudo-first-order dynamic equation; B.pseudo-second-order equation (V=50mL, m=50mg, 25°C)

Element	[wt.%] Square region	[wt.%] Micorsphere	
С	76.1	81.2	
0	18.2	13.4	
Ag	5.67	5.43	
Total	100	100	

Table S1 Mass composition of the elements in the mat from EDS analysis

Table S2 Mass composition of the elements in the mat from XPS analysis

Element	Content (wt%)
C1s	87.2
Ols	8.36
Ag3d	4.31
Hg4f	0.100

Table S3. Comparison with other reports

Composition abbreviate	Station	Maximum adsorption capacity	Optimal PH	Reference
Ag-PVA FM	mat	229mg/g	6~8	This study
SWCNT-SH	powders	131 mg/g	9	[S1]
PGCP-COOH	particles	13.73mg/g	6~8	[S2]
PANI-PA/CA	membrane	280.11mg/g	5	[83]
WS-AC	powders	151.5mg/g	2	[S4]
Cys-Fe3O4 MNPs	particles	380 mg/mol	5	[85]
T-MSNC	particles	19.79mg/g	no test	[S6]
Na2S2O3/Mn	particles	64 mg/mg	3~7	[S7]
MnO2/CNT	particles	58.8mg/g	7	[S8]
A336-MTBA-PVA/IL	beads	49.89mg/g	5	[89]

Figure S1 Photo images of the prepared fiber mat (a) before and (b) after thermal treatment

Figure S2 EDS spectra of the composite mat at (a) square area and (b) microsphere spots

Figure S3 ATR-FTIR spectra of initial and thermal treated Ag-PVA mat

Figure S4 Effect of temperature on the adsorption efficiency (C_0=20ng/mL , V=50 mL, m=50mg)

Figure S5 Effect of coexisting ions on the adsorption efficiency (V=50mL,

m=50mg, 25°C)

Figure S6 Regeneration and recovery of the used mat (V=50mL, m=50mg, C (HCl and HNO₃)=10% (v/v), V(HCl and HNO₃)= 5.0mL, 25°C)

Figure S7 Silver release from the mat during use (V=50mL, m=50mg, 25°C)

Figure S8 A.pseudo-first-order dynamic equation; B.pseudo-second-order equation $(V=50mL, m=50mg, 25^{\circ}C)$

References

- [S1] N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter, N.H. Voelcker, J Hazard Mater, 2013, 261, 534–541.
- [S2] T.S. Anirudhan, L. Divya, M. Ramachandran, J Hazard Mater, 2008, 157, 620-627.
- [S3] R. Li, L. Liu, F. Yang, J Hazard Mater, 2014, 280, 20-30.
- [S4] M. Zabihi, A. Ahmadpour, A.H. Asl, J Hazard Mater, 2009, 167, 230-236.
- [S5] X. Shen, Q. Wang, W. Chen, Y. Pang, Appl Surf Sci, 2014, 317, 1028-1034.
- [S6] B.Y. Song, Y. Eom, T.G. Lee, *Appl Surf Sci*, 2011, 257, 4754-4759.
- [S7] X. Lu, X. Huangfu, X. Zhang, Y. Wang, J. Ma, Water Res, 2014, 65, 22-31.
- [S8] H.K. Moghaddam, M. Pakizeh, JIndust Eng Chem, 2015, 21, 221-229.
- [S9] Y. Zhang, D. Kogelnig, C. Morgenbesser, A. Stojanovic, F. Jirsa, I. Lichtscheidl-
- Schultz, R. Krachler, Y. Li, B.K. Keppler, J Hazard Mater, 2011, 196, 201-209.