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S1. Experimental Section

Materials

Zinc nitrate hexahydrate, zinc acetate dihydrate, terephthalic acid, 4,4’-biphenyldicarboxylic acid,
adenine, methanol and chlorobenzene were purchased from Aldrich Chemical. N,N-diethylformamide
(DEF) was purchased from TCI. N,N-dimethylformamide (DMF) was purchased from Fisher Scientific.
4,4’ 4°-benzene-1,3,5-triyl-tribenzoic acid (H;BTB) was synthesized according to the synthesis

procedure reported in literature.

Preparations of porous carbon materials

MOF-5, MOF-177 and bioMOF-100 samples were synthesized following the synthesis procedures
reported in literatures. In order to obtain porous carbon materials, MOF-5, MOF-177 and bio-MOF-100
were placed in a quartz tube furnace and carbonized. The carbonization was performed at 1000 °C for

6 hours with a heating rate of 5 °C/min under an Ar flow. The resulting carbon materials were denoted

as M5-1000, M177-1000 and B100-1000, respectively.

Characterizations

Powder X-Ray diffraction (XRD) data were collected on a Rigaku smartlab diffractometer using Cu Ka
radiation (A = 1.5412 A). The morphologies before and after carbonization process were characterized
by using scanning electron microscopy (SEM) on a JEOL JSM-7800F microscope. Raman spectra were
obtained on a WITEC alpha300 spectrometer using a helium neon laser (532 nm). X-ray photoelectron
spectroscopy (XPS) measurements were performed on a PHI 5000 VersaProbe 1l X-ray photoelectron
spectrometer. Porosity characteristics of the samples were characterized by measuring nitrogen
adsorption isotherms at 77K using an adsorption analyzer (Autosorb-iQ, Quantachrome Instruments).
Prior to adsorption measurements, the carbonized samples were evacuated at 150°C for 5 hours under
vacuum. The specific surface areas were calculated using Brunauer—Emmett—Teller (BET) method in
the linear range (M5-1000; 0.0100 < P/P, <0.0994, M177-1000; 0.0100 < P/P, < 0.0993, B100-1000;

0.0070 < P/Py < 0.0395). CO, adsorption isotherms were obtained using an adsorption analyzer



(Autosorb-iQ, Quantachrome Instruments). Prior to adsorption measurements, the samples were

activated at 150 °C for 5 hours using an outgas port of the Autosorb-iQ instrument.

TIAST calculations

In order to predict adsorptive behaviors of a two-component gas mixture from single-component
isotherms, we used the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz. The IAST
adsorption selectivity for CO,/N, (15% CO,, 85% N,) and CO,/CH, (50% CO,, 50% CH,) at 298 K
were calculated. The adsorption selectivity for the two-component mixture is defined by

S=(q:/p1)/(q2/p2).

Breakthrough experiments

The breakthrough experiments were carried out in a custom-built system illustrated in Fig. S1. Five
mass flow controllers (0~100 mL/min) (Bronkhorst, Germany) were used to regulate the gas flow rates.
By combining two N, streams and two CO, streams with a humidifier, dry and humid CO,/N, mixtures
were generated. The column was placed in a ventilated thermostatted oven for measurements at a
constant temperature. The gas composition at the outlet of the column was measured online by a mass
spectrometer (Pfeiffer Vacuum Prisma QME 200, Germany).

To avoid large pressure drops, the powder sample was pelletized using a carver press (Carver, Inc.,
USA). The obtained pellets with a size of 500~1000 um were initially activated at 423 K for 5 hours
under vacuum. The activated pellets (153 mg) were then packed into a stainless steel column with a
length of 15 cm and an internal diameter of 0.44 cm. The remainder of the column was filled with glass
beads with a diameter of 750 um. The column was then degassed by a He flow of 40 mL/min at 423 K
for 1 hour to remove all the impurities adsorbed during the packing procedure. Between each
measurement, a He flow of 40 mL/min at 303 K was introduced into the column for at least 10 min.
At t=0, the He flow was switched to a flow of dry or humid CO,/N, mixture (CO,:N, = 15:85, total flow

rate = 40 mL/min).
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Figure S1. A schematic diagram of the dynamic breakthrough experimental setup. MS: Mass

spectrometer, MFC: Mass flow controller, P: Pressure transducer.



S2. Powder X-ray diffraction (PXRD) patterns
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Figure S2. PXRD patterns of (a) MOF-5, (b) MOF-177, (c) bioMOF-100.



S3. Scanning electron microscopy (SEM)

Figure S3. SEM images of (a) MOF-5, (b) M5-1000, (¢) MOF-177, (d) M177-1000, (e) bioMOF-100

and (f) B100-1000.
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Figure S4. SEM-EDS spectra of (a) M5-1000, (b) M177-1000, (c) B100-1000.



S4. X-ray photoelectron spectroscopy (XPS) spectra
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Figure S5. XPS spectra of (a) M5-1000, (b) M177-1000 and (c) B100-1000.



S5. BET plots
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Figure S6. BET plots of (a) M5-1000, (b) M177-1000, (c) B100-1000.



S6. The relation between surface areas of the porous carbons and Zn

contents of the parent MOF's
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Figure S7. The relation between BET surface areas of the porous carbons and Zn/C ratio of the parent
MOFs.

S7. DFT pore size distributions
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Figure S8. DFT pore size distributions of the porous carbons.



S8. CO, adsorption

CO, adsorption isotherms at 273 K :
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Figure S9. CO, adsorption isotherms of pristine MOFs and porous carbons at 273 K.



CO, adsorption isotherms at 298 K :
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Figure S10. CO, adsorption isotherms of pristine MOFs and porous carbons at 298 K.



CO, adsorption isotherms at low pressures (273 K) :
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Figure S11. CO, adsorption isotherms of the porous carbons at low pressure (273 K).

CO; adsorption isotherms at low pressures (298 K) :
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Figure S12. CO, adsorption isotherms of the porous carbons at low pressure (298 K).



S9. TIAST selectivity
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Figure S13. Single-component isotherms of CO,, CH, and N, for (a) M5-1000, (b) M177-1000 and (c)

B100-1000 at 298 K.

w
1

CO,/CH, Selectivity
N

1 - —e— M5-1000
—=—M177-1000
—a— B100-1000
0 —
0 20 40 60 80

Pressure (kPa)

100



Figure S14. CO,/CH, selectivity of the porous carbons at 298 K.



