Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## **Electronic Supplementary Information**

Urchin-like CoO-C Micro/Nano Hierarchical Structures as High Performance Anode Materials for Li-Ion Batteries

Lili Liu, Lihui Mou, Jia Yu, Shimou Chen\*

## **Supplementary Figures**

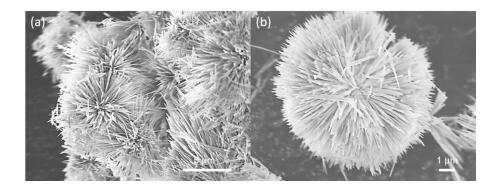



Fig. S1 Morphologies of urchin-like cobalt carbonate hydroxide precursor microspheres.

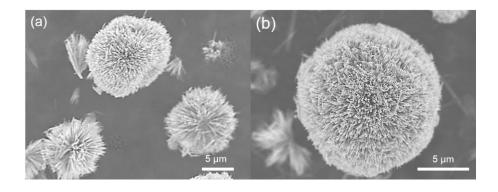



Fig. S2 Morphologies of final CoO-C microspheres.

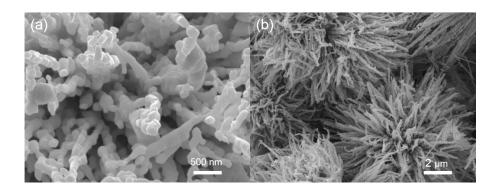
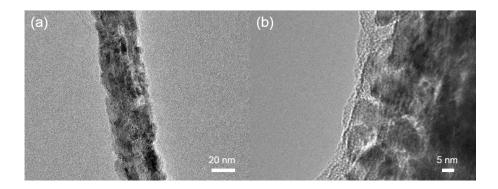
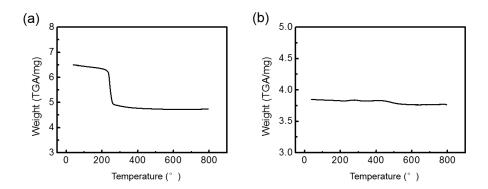





Fig. S3 Morphologies of CoO-C microspheres with higher carbon coating amount.



**Fig. S4** TEM image of the individual nanowire, exhibiting the porous structure of inner CoO and the thin carbon coating layer.



**Fig. S5** TG analysis curve of the (a) cobalt carbonate hydroxide precursor and (b) CoO-C final product.

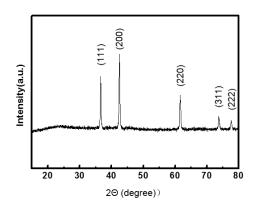



Fig. S6 XRD pattern of the single CoO material without carbon coating layer.

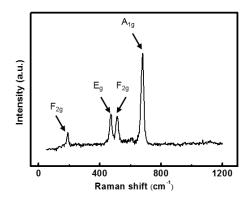
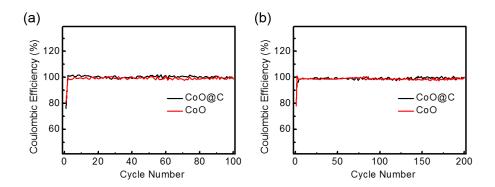




Fig. S7 Raman spectrum, exhibiting the  $F_{2g}$ ,  $A_{1g}$  and  $E_g$  peaks of CoO.



**Fig. S8** Coulombic efficiencies of the CoO-C and CoO during cycles with current densities of (a)  $100 \text{ mA g}^{-1}$  and (b)  $500 \text{ mA g}^{-1}$ .

**Table S1** Performance comparison with other LIB anodes based on cobalt-oxide based multiple or single component nanostructures.

| Electrode material                                                                 | Cycle<br>Numbers | Discharge<br>Capacity/mAhg <sup>-1</sup> | Current<br>density/mAg <sup>-1</sup> | Ref                                                    |
|------------------------------------------------------------------------------------|------------------|------------------------------------------|--------------------------------------|--------------------------------------------------------|
| Urchin-like CoO@C<br>Microspheres                                                  | 100              | 755                                      | 100                                  | Our Work                                               |
| Mesoporous Co <sub>3</sub> O <sub>4</sub><br>Nanowire Arrays                       | 20               | 700                                      | 111                                  | Nano Lett., 2008, <b>8</b> ,<br>265                    |
| Co <sub>3</sub> O <sub>4</sub> Nanobelt Array                                      | 25               | 770                                      | 177                                  | ACS Nano, 2010, <b>4</b> ,<br>1425                     |
| Single-, Double-, Triple-<br>Shelled Co <sub>3</sub> O <sub>4</sub> hollow spheres | 50               | 680, 866,<br>611                         | 178                                  | Adv. Funct. Mater.,<br>2010, <b>20</b> , 1680          |
| Mesoporous Co <sub>3</sub> O <sub>4</sub><br>Nanowire Arrays                       | 70               | 550                                      | 100                                  | Adv. Funct. Mater.,<br>2012, <b>22</b> , 861           |
| Porous ZnCo <sub>2</sub> O <sub>4</sub> Nanoflakes                                 | 25               | 750                                      | 80                                   | <i>J. Mater. Chem.</i> , 2010, <b>20</b> , 4439        |
| CoO@N-Doped Carbon<br>Nanocube                                                     | 50               | 598.3                                    | 100                                  | ACS Appl. Mater.<br>Interfaces, 2014, <b>6</b> , 10602 |
| CoO@C wall arrays                                                                  | 60               | 804                                      | 500                                  | <i>J. Mater. Chem. A</i> ,<br>2014, <b>2</b> , 11597   |