A first-principles investigation of a new hard multi-layers MnB₂ structure

Chunhong Xu,^a Kuo Bao,^a Shuailing Ma,^a Yanbin Ma,^a Shuli Wei,^a Ziji Shao,^a Xuehui Xiao,^a Xiaokang Feng,^a Tian Cui*^a

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China.

E-mail: cuitian@jlu.edu.cn

Table S1. Calculated elastic constants C_{ij} (GPa) for *Immm*-MnB₂ and some common transition metal diborides TMB₂(TM= Ta, W, Re) at P= 0 or 50 GPa.

Structure	Р	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₂₃
<i>Immm</i> - MnB ₂	0	653	442	643	273	161	166	178	170	189
2	50	910	673	899	374	239	231	242	240	312
P6/mmm-	0	605		475	233		225	154	206	
1 aD ₂	0	598ª		442 ^a	208ª		227 ^a	145ª	214 ^a	
$P6_3/mmc-$	0	550		650	225		188	173	221	
WD ₂	0	571 ^b		672 ^b	202 ^b		213 ^b	145 ^b	200 ^b	
P6 ₃ /mmc-	0	626		1045	263		223	180	122	
ReD ₂	0	643°		1035°	263°		244°	159°	129°	
	0	675 ^d		1081 ^d	278 ^d		264 ^d	147 ^d	115 ^d	

^a Ref 42, ^b Ref 43, ^c Ref 44, ^d Ref 16

Fig. S1. The calculated energy versus volume curves for *Immm*-MnB₂ using non-spin-polarized and spin-polarized calculations.

•

Fig. S2. Magnetic moment versus pressure for *Immm*-MnB₂ using spin-polarized calculation.

Table S2. Bader charge analysis for Immm-MnB₂ at 0 GPa.

Immm-MnB ₂							
Atom	Charge value (e)	δ(e)					
Mn	12.36	0.64					
Mn	12.36	0.64					
Mn	12.52	0.48					
Mn	12.52	0.48					
Mn	12.52	0.48					
Mn	12.52	0.48					
В	3.42	-0.42					
В	3.45	-0.45					
В	3.42	-0.42					
В	3.45	-0.45					
В	3.20	-0.20					
В	3.16	-0.16					
В	3.20	-0.20					
В	3.16	-0.16					
В	3.20	-0.20					
В	3.16	-0.16					
В	3.20	-0.20					
В	3.16	-0.16					