Supporting Information

Role of Tf_2N^- anions in the ionic liquid-water distribution of europium(III) chelates

Hiroyuki Okamura,*^a Noboru Aoyagi,^b Kojiro Shimojo,^a Hirochika Naganawa^a and Hisanori Imura*^c

^aAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan. E-mail: okamura.hiroyuki@jaea.go.jp ^bNuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ^cFaculty of Chemistry, Institute of Science and Engineering, Kanazawa University, Kakuma,

Kanazawa 920-1192, Japan. E-mail: imura@se.kanazawa-u.ac.jp

Fig. S1 Relationship between log $(K^{\circ}_{D,M}\beta_3)$ of the neutral Eu(tta)₃ chelate and log $K^{\circ}_{D,HE}$ of the enol form of 2-thenoyltrifluoroacetone (Htta). (•), $[C_n \text{mim}][\text{Tf}_2\text{N}]$; (\circ), alkanes, aromatic hydrocarbons, and chlorohydrocarbons;^{1,2} (\diamond), ketones;^{3,4} (Δ), ethers;¹ (∇), esters.^{3,5} 1, $[C_4 \text{mim}][\text{Tf}_2\text{N}]$; 2, $[C_6 \text{mim}][\text{Tf}_2\text{N}]$; 3, $[C_8 \text{mim}][\text{Tf}_2\text{N}]$; 4, diisopropyl ether (DIPE); 5, isobutyl methyl keton (MIBK); 6, benzene; 7, 1,2-dichloroethane (DCE). The respective straight lines were obtained by a least-squares fitting for the oxygen-containing organic solvents (dotted line) and for alkanes, aromatic hydrocarbons, and chlorohydrocarbons (dashed line).

Fig. S2 Fluorescence spectrum of $[Eu(tta)_3(H_2O)_3]$ in $[C_2mim][Tf_2N]$ (a), $[C_4mim][Tf_2N]$ (b), $[C_6mim][Tf_2N]$ (c), $[C_8mim][Tf_2N]$ (d), $[C_{10}mim][Tf_2N]$ (e), and $[C_4dmim][Tf_2N]$ (f) saturated with H₂O (black) and D₂O (red) following pulsed 394 nm excitation. The spectra were normalized by the intensity of the ${}^5D_0 \rightarrow {}^7F_1$ transition. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S3 Fluorescence decay at 613 nm for $[Eu(tta)_3(H_2O)_3]$ in $[C_2mim][Tf_2N]$ (a), $[C_4mim][Tf_2N]$ (b), $[C_6mim][Tf_2N]$ (c), $[C_8mim][Tf_2N]$ (d), $[C_{10}mim][Tf_2N]$ (e), and $[C_4dmim][Tf_2N]$ (f) saturated with H_2O (•) and D_2O (•) following pulsed 394 nm excitation. The decays were normalized at the first data point. The fluorescence decay on a logarithmic scale is presented in the inset graph, and the solid lines were obtained by a least-squares fitting. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S4 Fluorescence spectrum of $[Eu(tta)_3(H_2O)_3]$ in DIPE (a), MIBK (b), benzene (c), and DCE (d) saturated with H₂O (black) and D₂O (red) following pulsed 394 nm excitation. The spectra were normalized by the intensity of the ${}^5D_0 \rightarrow {}^7F_1$ transition. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S5 Fluorescence decay at 613 nm for $[Eu(tta)_3(H_2O)_3]$ in DIPE (a), MIBK (b), benzene (c), and DCE (d) saturated with H₂O (\bullet) and D₂O (\circ) following pulsed 394 nm excitation. The decays were normalized at the first data point. The fluorescence decay on a logarithmic scale is presented in the inset graph, and the solid lines were obtained by a least-squares fitting. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S6 Fluorescence spectrum of $[Eu(tta)_3(H_2O)_3]$ in $[C_2mim][Tf_2N, ClO_4]$ containing 5.0 mol dm⁻³ H₂O (black) and D₂O (red) (a), $[C_2mim][Tf_2N, ClO_4]$ containing 20 mol dm⁻³ H₂O (black) and D₂O (red) (b), and $[C_2mim][ClO_4]$ containing 20 mol dm⁻³ H₂O (black) and D₂O (red) (c) following pulsed 394 nm excitation. The spectra were normalized by the intensity of the ${}^5D_0 \rightarrow {}^7F_1$ transition. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S7 Fluorescence decay at 613 nm for $[Eu(tta)_3(H_2O)_3]$ in $[C_2mim][Tf_2N, ClO_4]$ containing 5.0 mol dm⁻³ H₂O (•) and D₂O (•) (a), $[C_2mim][Tf_2N, ClO_4]$ containing 20 mol dm⁻³ H₂O (•) and D₂O (•) (b), and $[C_2mim][ClO_4]$ containing 20 mol dm⁻³ H₂O (•) and D₂O (•) (c) following pulsed 394 nm excitation. Tf₂N⁻ concentration in the $[C_2mim][Tf_2N, ClO_4]$ solution was 0.50 mol dm⁻³. The decays were normalized at the first data point. The fluorescence decay on a logarithmic scale is presented in the inset graph, and the solid lines were obtained by a least-squares fitting. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Solvent	[water] / mol dm ⁻³	$k_{\rm H2O} /{\rm ms}^{-1}$	$k_{\rm D2O}$ / ms ⁻¹	n _{H2O}
[C ₂ mim][Tf ₂ N, ClO ₄]	5.0	3.33	2.72	0.6
	20	3.87	3.02	0.9
[C ₂ mim][ClO ₄]	20	6.84	4.57	2.4

Table S1 Fluorescence decay constants and the number of coordinated water molecules for $[Eu(tta)_3(H_2O)_3]$ dissolved in $[C_2mim][Tf_2N, ClO_4]$ and $[C_2mim][ClO_4]$ containing H_2O or D_2O

Fig. S8 Fluorescence spectrum of $[Eu(tta)_3(H_2O)_3]$ in DCE containing 0.10 vol% (a), 1.0 vol% (b), 3.0 vol% (c), 15 vol% (d), 30 vol% (e), and 50 vol% (f) $[C_4mim][Tf_2N]$ saturated with H₂O (black) and D₂O (red) following pulsed 394 nm excitation. The spectra were normalized by the intensity of the ${}^5D_0 \rightarrow {}^7F_1$ transition. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Fig. S9 Fluorescence decay at 613 nm for $[Eu(tta)_3(H_2O)_3]$ in DCE containing 0.10 vol% (a), 1.0 vol% (b), 3.0 vol% (c), 15 vol% (d), 30 vol% (e), and 50 vol% (f) $[C_4mim][Tf_2N]$ saturated with H₂O (•) and D₂O (•) following pulsed 394 nm excitation. The decays were normalized at the first data point. The fluorescence decay on a logarithmic scale is presented in the inset graph, and the solid lines were obtained by a least-squares fitting. Concentration of $[Eu(tta)_3(H_2O)_3]$ was 1.0×10^{-4} mol dm⁻³.

Solvent	IL fraction / vol%	$[Tf_2N^-] \ / \ mol \ dm^{-3}$	$k_{\rm H2O}$ / ms ⁻¹	$k_{\rm D2O}$ / ms ⁻¹	$n_{ m H2O}$
[C ₄ mim][Tf ₂ N]–DCE	0.10	3.4×10^{-3}	2.85	1.99	0.9
	1.0	3.4×10^{-2}	1.96	1.86	0.1
	3.0	0.10	1.96	1.85	0.1
	15	0.52	1.96	1.95	0
	30	1.0	1.94	1.96	0
	50	1.7	1.96	1.91	0.1

Table S2 Fluorescence decay constants and the number of coordinated water molecules for $[Eu(tta)_3(H_2O)_3]$ dissolved in $[C_4mim][Tf_2N]$ diluting with DCE, saturated with H_2O or D_2O

References

- 1 K. Akiba, Bunseki Kagaku, 1972, 21, 1630-1636.
- 2 Y. Kitatsuji, Y. Meguro, Z. Yoshida, T. Yamamoto and K. Nishizawa, *Solvent Extr. Ion Exch.*, 1995, 13, 289–300.
- 3 K. Akiba and T. Kanno, J. Inorg. Nucl. Chem., 1980, 42, 273–276.
- 4 T. Wakabayashi, K. Takaizumi, K. Seto, N. Suzuki and K. Akiba, *Bull. Chem. Soc. Jpn.*, 1968, **41**, 1854–1858.
- 5 N. Suzuki, K. Akiba and T. kanno, Anal. Chim. Acta, 1968, 43, 311-320.