**Electronic Supplementary Information (ESI):** 

## Sc promoted and aerogel confined Ni catalysts for coking- resistant

## dry reforming of methane

Xiaoyuan Zhao, Yang Cao, Hongrui Li, Jianping Zhang, Liyi Shi and Dengsong Zhang\*

Research Center of Nano Science and Technology, Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China.

Fax: 86 21 66136079; E-mail: dszhang@shu.edu.cn

## Preparation details of Ni/Al<sub>2</sub>O<sub>3</sub>-I and NiSc/Al<sub>2</sub>O<sub>3</sub>-I catalysts

All chemicals purchased by Sinopharm Chemical Reagent Company were used without any further purification, except for spherical alumina ( $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Shanghai Emperor Yang Co. Ltd.), and scandium nitrate (Sc(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, 99%, Shanghai Emperor Yang Co. Ltd.). deionized water (H<sub>2</sub>O), nickel nitrate (Ni(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, 98%), aluminum chloride hexahydrate (AlCl<sub>3</sub>·6H<sub>2</sub>O, 99%). Deionized water was used throughout the experiment.

The NiSc/Al<sub>2</sub>O<sub>3</sub>–I catalyst was prepared by incipient wetness impregnation. In a typical synthesis,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (1.0 g), Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.56 g) and Sc(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.084 g) were added into deionized water (60 mL). After stirring for 6 h, the solution was dried in hot air at 70 °C for two days. Powder obtained after the drying was heated to 600 °C at a heating rate of 1 °C /min. Then, it was calcined at the same temperature (600 °C) in air for 3 h. The NiSc/ Al<sub>2</sub>O<sub>3</sub>–I catalyst was obtained by reduction in a flow of H<sub>2</sub>/N<sub>2</sub> (having 10% H<sub>2</sub> in N<sub>2</sub> gas with a flow rate of 40 mL/min) at 900 °C for 1 h.

The Ni/Al<sub>2</sub>O<sub>3</sub>–I catalyst was synthesized by a method similar to that employed for synthesizing the NiSc/Al<sub>2</sub>O<sub>3</sub>–A catalyst, except in the absence of  $Sc(NO_3)_3$ ·6H<sub>2</sub>O.



 $\label{eq:Fig.S1} \textbf{Fig. S1} \text{ TEM images of various catalysts: (a) Ni/Al_2O_3-A; (b) NiSc/Al_2O_3-I; and (c) Ni/Al_2O_3-I.$ 



Fig. S2 Sc 2p XPS spectra of the NiSc/Al<sub>2</sub>O<sub>3</sub>–A and NiSc/Al<sub>2</sub>O<sub>3</sub>–I catalysts.



**Fig. S3** Catalytic stability test of various catalysts for methane dry reforming at 500 °C for 1800 min. (Catalytic conditions:  $CH_4$ : $CO_2 = 1:1$ , 45 mL/min per reactor ; 50 mg of catalysts.)



Fig. S4 XRD of the various catalysts stability tests for 1800 min.



Fig. S5 TEM images of the Ni/Al\_2O\_3–A catalyst stability tests for 1800 min.



Fig. S6 Schematic representation of methane dry reforming over (a) Ni/Al<sub>2</sub>O<sub>3</sub>–A; and (b) NiSc/Al<sub>2</sub>O<sub>3</sub>–A catalysts.

| Catalysts –                            | Ni dispersion (%) |          |
|----------------------------------------|-------------------|----------|
|                                        | t=10min           | t=360min |
| Ni/Al <sub>2</sub> O <sub>3</sub> -I   | 0.40              | 0.18     |
| NiSc/Al <sub>2</sub> O <sub>3</sub> -I | 0.45              | 0.29     |
| Ni/Al <sub>2</sub> O <sub>3</sub> -A   | 0.52              | 0.26     |
| NiSc/Al <sub>2</sub> O <sub>3</sub> -A | 0.56              | 0.55     |

**Table S1** The Ni dispersion of various catalysts during dry reforming of methane at 550  $^{\circ}$ C was determined by H<sub>2</sub> chemsorption.

The Ni dispersion of various catalysts was determined by  $H_2$  chemsorption. The Ni dispersion is low compared with other Ni-based catalysts which is consistent with the reported values of core shell catalysts due to the confinement effect. <sup>1,2</sup>

Reference:

1. Z. Li, L. Mo, Y. Kathiraser and S. Kawi, ACS Catal., 2014, 4, 1526-1536.

2. L.H. Yao, Y.X. Li, J. Zhao, W.J. Ji, C.T. Au, Catal. Today, 2010, 158, 401-408.