Supplementary Information (SI)

A fluorescent chemosensor for Sn²⁺ and Cu²⁺ based on a carbazole-containing diarylethene

Shengzu Qu, Chunhong Zheng*, Guanming Liao, Congbin Fan, Gang Liu, Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal

University, Nanchang, Jiangxi 330013, PR China

E-mail:	ezirobot@163.com	_(C.	Zheng)	Tel	&	Fax:	+86-791-82805857;
pushouzhi	i@tsinghua.org.cn (S.Pu	ı) Tel &	x Fax: +86-7	791-838	31996		

Content:

1. Synthesis and characterization data
Scheme S1 Synthesise of intermediate 2
Scheme S2 Synthesise of intermediate 3
2. Supplementary data
Fig. S1. The stability of 10. Initial absorptance of the sample was fixed to 1.0
Fig. S2. Mass spectra of 10 , $10 + Sn^{2+}$ and $10 + Cu^{2+}$
Fig. S3. Changes in IR spectra of 10 induced by Sn ²⁺ and Cu ²⁺
Fig. S4. ¹ H NMR (400 MHz, DMSO- d_6) spectral changes of 10 with Sn ²⁺ inosS7
Fig. S5. Detection limit plot: intensity verse concentration of Sn ²⁺ and Cu ²⁺ : (A) Sn ²⁺ ; and (B)
Cu ²⁺
Fig. S6. Fluorescence intensity of 10 and 10 + 10 equiv Sn^{2+} , 10 + 9 equiv Cu^{2+} in water with
different pH conditions
3. NMR spectra
Fig. S7. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectra of 10 S10
Fig. S8. ¹³ C NMR (100 MHz, CDCl ₃) spectra of 10
4. HRMS
Fig. S9. HRMS for 10

1. Synthesis and characterization data

Scheme S1 Synthesise of intermediate 2.

(2-Methyl-5-phenyl)-3-thienyl-perfluorocyclopentene (2)

To a stirred of **5** (2.52 g, 10 mmol) in THF solution (50 mL), *n*-BuLi/hexane solution (2.5 mol L⁻¹) was slowly added a under a nitrogen atmosphere at 195 K. After 30 min, C₅F₈ (2.33 g, 11 mmol) was added and the mixture was stirred for 2 h at this temperature. The reaction mixture was extracted with diethyl ether and evaporated in vacuo, then purified by column chromatography to give compound **2** (2.34 g) in 64.1 % yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.41 (s, 3H, - CH₃), 7.22 (s, 1H, thienyl-H), 7.28 (s, 1H, phenyl-H), 7.32 (d, 2H, phenyl-H, *J* = 8.0 Hz), 7.48 (d, 2H, phenyl-H, *J* = 8.0 Hz); ¹³C NMR (DMSO-*d*₆, 100 MHz), δ (ppm): 14.4, 120.1, 122.7, 125.7, 128.6, 129.6, 132.8, 142.5, 143.8.

Scheme S2 Synthesise of intermediate 3.

2-Methyl-3-bromo-5-formaldehyde-thiophene (7)

To a stirred solution of compound **6** (24.0 g, 190.5 mmol) in acetic acid (100 mL) at 273 K was slowly added Br_2 (25 mL). The reaction mixture was stirred overnight at this temperature. The reaction was stopped by the addition of water. The mixture was neutralized by Na_2CO_3 and

extracted with ether. The ether extract was dried, filtrated, and concentrated. The residue was purified by distillation in vacuo. Compound 7 was obtained as a yellow solid of 32.3 g in 81.2 % yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.47 (s, 3H, -CH₃), 7.62 (s, 1H, thiophene-H), 9.75 (s, 1H, -CHO); ¹³C NMR (DMSO-*d*₆, 100 MHz), δ (ppm): 15.4, 101.7, 139.6, 140.0, 145.3, 183.1

2-Methyl-3-bromo-5-(1,3-dioxygen-dioxolane)-thiophene (3)

Compound 7 (2.04 g, 10 mmol), glycol (3.2 g, 50 mmol) , and *p*-toluenesulfonic acid (0.02 g, 4.27 mmol) was dissolved in benzene (120 mL). Under the Dean–Stark condition, the reaction mixture was refluxed overnight, and then washed with NaHCO₃ (5 % (w/v), 2 × 50 mL) aqueous. The combined benzene layers were dried, filtered, and evaporated in vacuum to give 2.31 g **3** as a solid in 93 % yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.37 (s, 3H, -CH₃), 3.98–4.15 (m, 4H, -CH₂), 6.04 (s, 1H, -CH), 6.95 (s, 1H, thiophene-H); ¹³C NMR (DMSO-*d*₆, 100 MHz), δ (ppm): 15.3, 60.6, 63.2, 111.2, 139.2, 139.6.0, 145.5.

2. Supplementary data

Fig. S1. The stability of 10. Initial absorptance of the sample was fixed to 1.0.

Fig. S2. Mass spectra of 10, $10 + Sn^{2+}$ and $10 + Cu^{2+}$.

Fig. S3. Changes in IR spectra of 10 induced by Sn^{2+} and Cu^{2+} .

Fig. S4. ¹H NMR (400 MHz, DMSO- d_6) spectral changes of 10 with Sn²⁺ inos.

Fig. S5. Detection limit plot: intensity verse concentration of Sn²⁺ and Cu²⁺: (A) Sn²⁺; and (B) Cu²⁺.

Fig. S6. Fluorescence intensity of 10 and 10 + 10 equiv Sn^{2+} , 10 + 9 equiv Cu^{2+} in water with different

pH conditions.

3. NMR spectra

Fig. S7. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of **10**.

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) spectra of **10**.

4. HRMS

Fig. S9. HRMS for 10.