Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

1

Supporting Information

2 Modification of Benzoxazine with Aryl-Ether-Ether-Ketone

3 Diphenol: Preparation and Characterization

4 Xia Yiqing, Lin Yifeng, Ran Qichao,* Zhu Rongqi, Gu Yi*

5 State Key Laboratory of Polymeric Materials Engineering, College of Polymer

6 Science and Engineering, Sichuan University, Chengdu, China; E-mail:

7 guyi@scu.edu.cn, Fax: +86 28 85405138; Tel: +86 28 85405138.

8

9 1. Synthesis and Characterization of Bisphenol A-aniline benzoxazine

10 **(BA-a)**

11 1.1 Synthesis of Bisphenol A-aniline benzoxazine (BA-a)

12 To a 500 mL of flask were added sequentially toluene (100 mL), 37% formaldehyde solution (71.4 g, 0.88 mol), aniline (37.2 g, 0.4 mol) and Bisphenol-A 13 (45.6 g, 0.2 mol). Then the mixture was slowly heated to 80 °C and hold for 5 h. 14 When the reaction was completed, the reaction mixture was cooled and washed with 1 15 N aqueous solution of sodium hydroxide. Then the organic layer was washed several 16 times with deionized water and crystallized at 5°C. The precipitate product was 17 collected by filtration and recrystallized twice from a toluene-ethanol mixed solvent. 18 Finally, the BA-a crystal was washed with ethanol and obtained product in 78% yield. 19 20

21 1.2 Characterization of Bisphenol A-aniline benzoxazine (BA-a)

22 **BA-a**: mp. 109.2°C;

23 ¹**H NMR** (400 MHz, DMSO-*d*₆, δ): 7.26, 7.24, 7.22 (4H, H^h, t), 7.13, 7.11 (4H, H^g, d),

 $24 \quad 7.00 \ (2H, H^b, s), \ 6.90, \ 6.88, \ 6.86, \ 6.84 \ (4H, H^f), \ 6.65, \ 6.63 \ (2H, H^{i+e}), \ 5.41 \ (4H, H^d, s),$

25 4.61 (4H, H^c, s), 1.55 (6H, H^a, s).

1

FT-IR (KBr, cm⁻¹): 2965 (stretching vibration of CH₃); 1600 cm⁻¹ (framework
vibration of benzene), 1496 cm⁻¹ (1,2,4-substitutation), 1232 and 1030 cm⁻¹
(symmetrical stretching and asymmetrical stretching of ether), 948 cm⁻¹ (benzoxazine
ring).

33

36

34

35

37 2. Characterization of 4,4'-bis(m-hydroxyphenoxy) benzophenone

38 (m-DHPBP)

39 ¹**H NMR** (400 MHz, DMSO-*d*₆, (CH₃)₄Si, *δ*_H, ppm): 9.78 (4H, Ar-OH, s), 7.79, 7.77

$(12H, H^{a}, d)$, 7.55, 7.53, 7.51 $(1H, H^{b}, t)$.

47 (1,3-substitutation).

Figure SIV FT-IR spectra of m-DHPBP

Gel Permeation Chromatography (GPC): GPC experiments were performed using a
Waters 2414 system, equipped with two consecutive polystyrene gel columns (Waters
Styrage HR 2 DMF 7.8×300 mm and Waters Styrage HR 4 DMF 7.8×300 mm) and

refractive index (RI)) detectors, using DMF as an eluent, at a flow rate of 1.0 mL/min, 54 calibrated with polystyrene standards. The sample concentration in each injection 55 solution was 0.40 wt%, and the solutions were filtered through a 0.45-um filter prior 56 to injection. DMF at 35 °C was used as the eluent. The results obtained with the RI 57 detector were used along with a calibration curve generated using 9 polystyrene 58 standards to calculate the M_n values for the polymers. The peak molecular weights of 59 the polystyrene tandards were 176000, 116000, 42400, 10700, 6520, 2650, 890, 470 60 and 373 g·mol⁻¹. The GPC curve showed two peaks and M_n s of peak¹ and peak² were 61 3258 g/mol and 2342 g/mol, respectively. 62

63 64

Figure SV GPC curve of m-DHPBP