Complex 1				
Cd(1)-O(1)	2.248(5)	Cd(1)-N(2)	2.283(5)	
Cd(1)-O(1) ^{#1}	2.248(5)	Cd(1)-O(2)	2.545(6)	
$Cd(1)-N(2)^{\#1}$	2.283(5)	$Cd(1)-O(2)^{\#1}$	2.545(6)	
O(1)-Cd(1)-O(1) ^{#1}	158.3(3)	O(1)-Cd(1)-N(2) ^{#1}	107.42(19)	
O(1) ^{#1} -Cd(1)-N(2) ^{#1}	84.40(17)	O(1)-Cd(1)-N(2)	84.40(17)	
$O(1)^{\#1}-Cd(1)-N(2)$	107.42(19)	N(2) ^{#1} -Cd(1)-N(2)	115.1(3)	
O(1)-Cd(1)-O(2)	52.66(15)	O(1) ^{#1} -Cd(1)-O(2)	111.10(18)	
N(2) ^{#1} -Cd(1)-O(2)	88.9(2)	N(2)-Cd(1)-O(2)	136.19(16)	
O(1)-Cd(1)-O(2) ^{#1}	111.10(18)	O(1) ^{#1} -Cd(1)-O(2) ^{#1}	52.66(15)	
N(2) ^{#1} -Cd(1)-O(2) ^{#1}	136.19(16)	N(2)-Cd(1)-O(2) ^{#1}	88.9(2)	
O(2)-Cd(1)-O(2) ^{#1}	98.1(3)	$O(1)-Cd(1)-C(1)^{\#1}$	135.5(2)	
$O(1)^{\#1}-Cd(1)-C(1)^{\#1}$	26.59(17)	N(2) ^{#1} -Cd(1)-C(1) ^{#1}	110.5(2)	
N(2)-Cd(1)-C(1) ^{#1}	99.6(2)	O(2)-Cd(1)-C(1) ^{#1}	105.48(18)	
$O(2)^{\#1}-Cd(1)-C(1)^{\#1}$	26.09(16)			
Symmetry codes: #1:	-x+3/2,y,-z+1			
		Complex 2		
Cd(1)-N(4) ^{#1}	2.306(4)	Cd(1)-O(2)	2.320(3)	
Cd(1)-N(2)	2.322(4)	Cd(1)-N(5)	2.326(4)	
Cd(1)-O(4)	2.376(4)	Cd(1)-O(3)	2.527(4)	
Cd(1)-O(1)	2.580(4)			
N(4) ^{#1} -Cd(1)-O(2)	139.11(16)	N(4) ^{#1} -Cd(1)-N(2)	93.72(14)	
O(2)-Cd(1)-N(2)	89.72(13)	N(4)#1-Cd(1)-N(5)	87.88(15)	
O(2)-Cd(1)-N(5)	86.67(14)	N(2)-Cd(1)-N(5)	175.99(14)	
$N(4)^{#1}-Cd(1)-O(4)$	134.16(14)	O(2)-Cd(1)-O(4)	86.04(14)	
N(2)-Cd(1)-O(4)	93.91(15)	N(5)-Cd(1)-O(4)	87.59(15)	
$N(4)^{\#1}-Cd(1)-O(3)$	82.66(17)	O(2)-Cd(1)-O(3)	138.17(17)	
N(2)-Cd(1)-O(3)	89.24(16)	N(5)-Cd(1)-O(3)	94.61(16)	
O(4)-Cd(1)-O(3)	52.34(15)	N(4) ^{#1} -Cd(1)-O(1)	87.04(15)	
O(2)-Cd(1)-O(1)	52.23(13)	N(2)-Cd(1)-O(1)	89.40(14)	
N(5)-Cd(1)-O(1)	87.01(14)	O(4)-Cd(1)-O(1)	138.15(14)	
O(3)-Cd(1)-O(1)	169.50(15)			
Symmetry codes: #1: -:	x+1,-y+1,-z+2	#2: x,y-1,z #3: x,y+1,z		
		Complex 3		
Zn(1)-O(1)	1.940(2)	$Zn(1)-O(1)^{\#1}$	1.940(2)	
Zn(1)-N(2)	2.019(2)	$Zn(1)-N(2)^{\#1}$	2.019(2)	
O(1)-Zn(1)-O(1) ^{#1}	112.25(14)	O(1)-Zn(1)-N(2)	119.38(9)	
$O(1)^{\#1}$ -Zn(1)-N(2)	103.61(9)	O(1)-Zn(1)-N(2) ^{#1}	103.61(9)	
$O(1)^{\#1}$ -Zn(1)-N(2) ^{#1}	119.38(9)	N(2)-Zn(1)-N(2) ^{#1}	98.74(14)	
C(1)-N(2)-Zn(1)	134.2(2)	C(2)-N(2)-Zn(1)	121.0(2)	
C(10)-O(1)-Zn(1)	118.1(2)			
Symmetry codes: #1: -x+1,y,-z+3/2 #2: -x+3/2,-y+5/2,-z+2				
Complex 4				

Table S1 Selected bond lengths (Å) and angles (°) for 1-4

Cd(1)-N(2)	2.231(7)	Cd(1)-N(3) 2.314(8)
Cd(1)-O(1)	2.316(6)	Cd(1)-O(3) 2.351(6)
Cd(1)-O(2) ^{#1}	2.390(6)	Cd(1)-O(4) 2.496(6)
Cd(1)-O(2)	2.622(6)	Cd(1)-C(8) 2.757(9)
N(2)-Cd(1)-N(3)	163.8(3)	N(2)-Cd(1)-O(1) 108.1(2)
N(3)-Cd(1)-O(1)	86.5(3)	N(2)-Cd(1)-O(3) 96.2(2)
N(3)-Cd(1)-O(3)	91.4(3)	O(1)-Cd(1)-O(3) 87.1(2)
N(2)-Cd(1)-O(2) ^{#1}	81.0(2)	$N(3)-Cd(1)-O(2)^{\#1}$ 84.6(3)
O(1)-Cd(1)-O(2) ^{#1}	127.5(2)	$O(3)-Cd(1)-O(2)^{\#1}$ 144.6(2)
N(2)-Cd(1)-O(4)	86.7(2)	N(3)-Cd(1)-O(4) 86.2(3)
O(1)-Cd(1)-O(4)	139.8(2)	O(3)-Cd(1)-O(4) 53.5(2)
O(2) ^{#1} -Cd(1)-O(4)	91.1(2)	N(2)-Cd(1)-O(2) 87.6(2)
N(3)-Cd(1)-O(2)	96.6(2)	O(1)-Cd(1)-O(2) 51.7(2)
O(3)-Cd(1)-O(2)	137.2(2)	$O(2)^{\#1}-Cd(1)-O(2)$ 78.1(2)
O(4)-Cd(1)-O(2)	168.5(2)	N(2)-Cd(1)-C(8) 92.2(3)
N(3)-Cd(1)-C(8)	88.1(3)	O(1)-Cd(1)-C(8) 113.3(3)
O(3)-Cd(1)-C(8)	26.7(2)	$O(2)^{\#1}-Cd(1)-C(8)$ 118.0(2)
O(4)-Cd(1)-C(8)	26.9(2)	O(2)-Cd(1)-C(8) 163.7(2)
Symmetry codes: #1: ->	x+1,y,-z+3/2	#2: x,y+1,z #3: x+1,y,z #4: x-1,y,z #5: -x,y,-z+1/2

Table S2 Specified hydrogen bond distances (Å) and angles (°) of complex 4

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<dha< th=""></dha<>
$C28-H28\cdots O3^i$	0.93	2.41	3.287(11)	156.9
$C21-H21\cdots O3^i$	0.93	2.43	3.341(11)	166.0

Symmetry code: (*i*) 1 - x, 1 - y, 1 - z.

Table S3 The coordination modes of H_2 dpb ligand and the roles of ancillary ligands in complexes 1-4

Complex	Coord. modes	Ancillary ligands/role	Dihedral angles (°) of H ₂ dpb	Structure and topology	
1	Mode I	Bimb/bridging	42.04(7)/59.69(9)/32.43(7)	$2D + 2D \rightarrow 3D$	
				(2,2,4)-connected	
				$(12^{5} \cdot 16)(12)^2$ unprecedented	
				2-fold interpenetrated	
				network	
2	Mode I	Tib/bridging	32.85(2)/31.12(2)/31.85(1)	$2D \rightarrow 3D$ (2,3,5)-connected	
				$(4^2 \cdot 6 \cdot 8^6 \cdot 12)(4^2 \cdot 6)(8)$	
				unprecedented 3D	
				supramolecular network	
3	Mode II	4,4'-Bibp/bridging	18.78(4)/34.31(3)/47.91(4)	1D chain \rightarrow 3D	
				supramolecular structure	
4	Mode III	1,3-Bitl/bridging	35.78(2)/27.96(3)/19.18(3)	$2D \rightarrow 3D$ 4-connected 3D	
				supramolecular network	

Complex/ligand	λ_{ex}/nm	λ_{em}/nm
1	275	375
2	270	369
3	265	376
4	255	383
H ₂ dpb	275	405
Tib	275	371
4,4'-bibp	270	378
Bimb	220	380
1,3-bitl	280	385

Table S4 Wavelengths of the emissionmaxima and excitation (nm) of 1-4 and free organic ligands at room temperature

Table S5 The degradation ratio of MB in Cd(II)/Zn(II) CPs

Coordination Polymer	MB Degradation Ratio (%)	Time (min)
$[Cd_{3}(3,4'-tmbpt)_{2}(L)_{2}(H_{2}O)] \cdot 1.5H_{2}O$	50	90
[NaCd ₃ (4,4'-tmbpt)(L) ₂ (OH)]·H ₂ O	60	90
${[Zn(4-bpah)(1,3-BDC)(H_2O)]}_n$	31	160
${[Cd(4-bpah)(1,3-BDC)]}_n$	33	160
${[Cd(3-bpah)(1,3-BDC)] \cdot H_2O}_n$	35	160

Fig. S1

Fig. S1 The C-H···C and π - π interactions.

Fig. S2 The O-H \cdots O hydrogen bonds along [1,1,0] orientation.

Fig. S3 The C-H···O bonds along [0,1,1] orientation.

Fig. S4 The TGA curves for complexes 1-4.

Fig. S5 PXRD patterns of simulated , 2-4 @ Fe³⁺/ Cu²⁺ and 1-4 @ Cr₂O₇²⁻.

Fig. S6 (a-c)

Fig. S6 (a) Absorption spectra of the RhB solution in the presence of complex 1.

Fig. S6 (b) Absorption spectra of the RhB solution in the presence of complex 2.

Fig. S6 (c) Absorption spectra of the RhB solution in the presence of complex 4.

Fig. S7 (a-c)

Fig. S7 (a) Absorption spectra of the MB solution in the presence of complex 1.

Fig. S7 (b) Absorption spectra of the MB solution in the presence of complex 2.

Fig. S7 (c) Absorption spectra of the MB solution in the presence of complex 4.

Fig. S8 PXRD patterns of complexes 1-4 before and after photocatalysis process.