Electronic supplementary information (ESI) for the manuscript:

Effect of tungsten surface density of WO_x-ZrO₂ on its catalytic performance

in hydrogenolysis of cellulose to ethylene glycol

Jiachun Chai^{a,b}, Shanhui Zhu^{a,*}, Youliang Cen^{a,b}, Jing Guo^{a,b}, Jianguo Wang^a, Weibin Fan^{a,*}

^aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China
^bUniversity of Chinese Academy of Sciences, Beijing 100049, PR China

Table of contents

Fig. S1 XRD pattern of microcrystalline cellulose.

Fig. S2 DR UV-Vis spectra of WZr_{30,850} and WZr_{30,900}.

Fig. S3 H₂-TPR profiles of (a) WZr_{30, 850} combined with Ru/C, (b) WZr_{30, 850}, and (c) WZr_{30, 900}.

Fig. S4 XRD patterns of $WZr_{x, 800}$ with different tungsten loading.

Fig. S5 GC-MS analysis of the 2,2'-oxydiacetaldehyde.

Fig. S6 ¹³C NMR spectrum of the products at the reaction of 0.5 h.

Table S1 BET surface area and tungsten surface density of $WZr_{x, 800}$.

Fig. S1 XRD pattern of microcrystalline cellulose.

Fig. S2 DR UV-Vis spectra of $WZr_{30, 850}$ and $WZr_{30, 900}$.

Fig. S3 H_2 -TPR profile of (a) $WZr_{30,850}$ combined with Ru/C (b) $WZr_{30,850}$ (c) $WZr_{30,900}$

The more intense reduction peak of the $WZr_{30, 850}$ combined with Ru/C than those of $WZr_{30, 850}$ and $WZr_{30, 900}$ reveals that Ru/C promotes the reduction of WO₃ to W⁵⁺ species.

Fig. S4 XRD patterns of $WZr_{x, 800}$ with different tungsten loading.

Fig. S5 GC-MS analysis of the 2,2'-oxydiacetaldehyde

Fig. S6 ¹³C NMR spectrum of the products at the reaction of 0.5 h.

The 176.45 ppm peak can be attributed to the aldehyde carbon of 2,2'-oxydiacetaldehyde, and the 67.50 ppm peak can be attributed to the methylene carbon of 2,2'-oxydiacetaldehyde.

Samples	WZr _{20,800}	WZr _{30,800}	WZr _{40,800}	WZr _{50,800}
BET (m ² /g)	49.2	41.7	36.3	25.6
Tungsten surface density (W/nm ²)	10.6	18.9	28.7	51.8

Table S1 BET surface area and tungsten surface density of $WZr_{x, 800}$.