Supporting Information

Thermoplastic Microfluidic Devices for Targeted Chemical and Biological Applications

Dan Voicu,^a Yihe Wang,^a Michael Debono,^a Gabriella Lestari,^b Minseok Seo,^a Sangho Cho,^a and Eugenia Kumacheva, ^{a,c}

S1. Calculation of volume of gas plugs in PVC and PDMS reactors

To measure the extent of nitrogen gas perfusion through the ceiling of the PVC and PDMS T-junction MF devices, we generated segmented flow of alternating water slugs and N₂ gaseous plugs, similar to our earlier work.¹ The flow was stopped and a plug, at least, 15 cm downstream of the T-junction became stationary. The length of the plug, $L_{\rm p}$, was measured during the 5 hr time interval. To calculate the initial volume of the plug, $V_{\rm 0}$, immediately after flow was stopped, we used the equation²

$$V_0 = H \cdot w \left(L_p - \left(H - 2d_f \right) \right) + \pi \cdot \left(w \cdot \left(\frac{H}{2} - d_f \right)^2 \right)$$
(1)

where V_0 is the plug volume at t = 0, H and w are the height and width of the microchannel, respectively ($H = 150 \mu m$, $w = 300 \mu m$), and d_f is the thickness of the liquid film surrounding the plug ($d_f = 1.5 \mu m$)². We plotted the normalized volume, V_t/V_0 , *vs.* time (Figure 2 in the main text of the manuscript) to compare the rate of nitrogen gas migration across the ceiling of the MF device fabricated in PDMS and PVC.

References

- D. Voicu, M. Abolhasani, R. Choueiri, G. Lestari, C. Seiler, G. Menard, J. Greener,
 A. Guenther, D. W. Stephan, and E. Kumacheva, *J. Am. Chem. Soc.* 2014, **136**, 3875.
- M. Abolhasani, M. Singh, E. Kumacheva, and A. Guenther, *Lab Chip*, 2012, 12, 1611.