Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Unusual Enhancement in the Electroreduction of Oxygen by NiCoPt by Surface Tunability through Potential Cycling

Moorthi Lokanathan,^{ab} Indrajit M. Patil,^{ac} Alhasan Kabiru Usman,^c Anita Swami,^c Pravin Walke,^d M. Navaneethan^e and Bhalchandra Kakade^{ac*}

SRM Research Institute,^a SRM University, Kattankulathur - 603 203, Chennai (India)

Department of Physics and Nanotechnology,^b SRM University, Kattankulathur - 603 203, Chennai (India)

Department of Chemistry,^c SRM University, Kattankulathur - 603 203, Chennai (India) National Centre for Nanosciences and Nanotechnology,^d University of Mumbai,

Mumbai - 400098 (India)

Research Institute of Electronics,^e Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8011, Japan.

Fax: (+91) 44-2745 6702; Tel: (+91) 44-2741 7920.

*Corresponding author E-mail: bhalchandrakakade.a@res.srmuniv.ac.in

Catalyst	ECSA (m ² /g _{Pt})	Im (mA/mg _{Pt})	Is (mA/cm ² _{Pt})		
NCP6/C	26.48	141.46	534.07		
NCP8/C	13.169	96.24	729.97		
NCP10/C	68.18	505.24	741.31		
NCP16/C	21.7	271.36	651.709		

 Table S1. The activity comparison of various NCP catalysts

S. No.	Catalyst	ECSA (m ² /g _{Pt})		MA (A/mg _{Pt})		Norm	Pof		
		Before	After	Before	After stability	/cycles (1k=1000)			NUI.
		stability	stability	stability		Loss	Gain	Cycles	
						(%)	(%)	(k)	
1	Pt65Ir11Co24/C - 400 °C	70	25	0.41	0.06	85		20k	1
2	Pt-Rh-Ni/C	N/A	N/A	0.82	1.14		39	4k	2
3	Pt-Rh-Ni/C	N/A	N/A	0.82	0.72	12.2		8k	2
4	Pt-Rh-Ni/C	N/A	N/A	0.82	0.32	61		30k	2
5	Pt3Ni-Fe/C (13 nm)	28.9	27.46	0.37	N/A	25		16k	3
6	Mo-Pt3Ni/C	67.7	N/A	6.98	6.6	5.5		8k	4
7	Pt2CuNi/C	35.3	36.85	2.35	1.91	18.7		4k	5
8	Pt2CuNi/C	35.3	N/A	2.35	1.60	31.9		10k	5
9	PtCu3Co	112	N/A	0.37	N/A	N/A	N/A	N/A	6
10	PtCuCo3	111	N/A	0.49	N/A	N/A	N/A	N/A	6
11	Pt30Ni51Co19 – 1 step	8.6	N/A	N/A	N/A	47		4k	7
12	Pt48Ni27Co25 – 2 step	3	N/A	N/A	N/A	51		4k	7
13	Pt36Ni15Co49/C - 400 °C	56.6	N/A	0.56	0.11	80.4		10k	8
14	Pt36Ni15Co49/C - 700 °C	48.0	N/A	0.73	0.15	79.5		10k	8
15	Pt36Ni15Co49/C - 926 °C	47.7	N/A	0.88	0.21	76.1		10k	8
16	Ni@Au@PtNi/C	51	50	0.38	0.35	<10		10k	9
17	PtCoMn	N/A	N/A	2.1	1.0	52.4		1.08k	10
18	PtCoMn	N/A	N/A	N/A	0.2.16	71.4		2.16k	10
19	Pt2FeCo/C –L10	2.6	3.2	0.51	0.4	21.6		2.16k	11

Table S2. Comparison of electrochemical activity of Pt-based ternary alloy catalysts

20	Pt6FeCo/C –L12	3.45	2	0.27	0.17	37.0		5k	11
21	Pt2FeCo/C – 800 °C	60	52	0.505	0.38	24.8		5k	12
22	Pt2FeCo/C	4.51	3.87	0.0665	0.0286	57		5k	13
23	Pt2FeNi/C	4.25	5.12	0.0684	0.0286	58.2		2k	13
24	Pt2CoNi/C	3.97	3.10	0.0634	0.0298	53		2k	13
25	PtNiFe nanocubes	70.4	N/A	0.00534	0.00498	6.7		1k	14
26	PtNiFe octrahedran	73.3	N/A	0.0042	N/A	N/A		N/A	14
27	PtNiFe polyhedran	68.5	N/A	0.00467	N/A	N/A		N/A	14
28	PtNiFe nanowire	69.3	N/A	0.00399	N/A	N/A		N/A	14
29	Pt-Ni-Ir/C	49.45	44.51	0.511	0.337	34		10k	15
30	Fct-PtFeCu	43	36	0.5	0.38	24		10k	16
31	Fct-PtFeCo	52	37	0.48	0.32	33.3		10k	16
30	PtNiCo/C	68.1	54.7	0.5052	0.5811		15	10k	This work
31	PtNiCo/C	68.1	52.3	0.505	0.6557		29.8	20k	This work
32	PtNiCo/C	68.1	51.5	0.505	0.6957		37.7	30k	This work

Figure S1. EDX patterns of (A) The NCP10/C catalyst and (B) commercial Pt/C.

Figure S2. A (i) HAADF-STEM image of a NCP10/C before stability test. (ii-vi) EDS elemental mapping distributions for (ii) Co, Ni and Pt;(iii) Pt;(iv) Co; (v) Ni and (vi) C. B (i) HAADF-STEM image of a NCP10/C after stability test. (ii-vi) EDS elemental mapping distributions for (ii) Co, Ni, Pt and C;(iii) Ni;(iv) Pt;(v) Co and (vi) C.

Figure S3. (A) Comparative XRD pattern of fcc and fct structure of NCP10/C catalyst with Pt ICSD-03-065-2868. (B) Linear sweep voltammograms of NCP10(fcc), NCP10(fct) and Commercial Pt/C catalyst, recorded in the presence of O_2 -saturated 0.1 M HClO₄ at 25°C at a sweep rate of 10 mVs⁻¹ and rotation rate of 1600 rpm and inset shows the their comparative mass activity (Im).

Figure S4. (A) Rotating ring-disk electrode (RRDE) voltammograms of NCP10/C catalyst. The disk electrode was scanned at a rate of 10 mV s⁻¹ with 1600 rpm and the ring potential was kept constant at 1.3 V vs. RHE. (B) H_2O_2 percentage yield and no. of electron transfer during the reaction.

Figure S5. The Cyclic voltammograms comparison of NCP6/C, NCP8/C, NCP10/C, NCP16/C electrocatalyst with Commercial Pt/C catalyst, recorded in the presence of N_2 -saturated 0.1 M HClO₄ at a sweep rate of 20 mVs⁻¹.

Figure S6. Linear sweep voltammograms of NCP6/C, NCP8/C, NCP10/C, NCP16/C and Commercial Pt/C catalyst, recorded in the presence of O_2 -saturated 0.1 M HClO₄ at 25°C at a sweep rate of 10 mVs⁻¹ and rotation rate of 1600 rpm

Figure S7. EDX patterns of the NCP10/C catalyst after 30 k durability cycles.

Figure S8. The c/a ratio of the NCP10/C catalyst calculated from the XRD pattern after different stability cycles.

REFERENCES:

- R. Loukrakpam, B. N. Wanjala, J. Yin, B. Fang, J. Luo, M. Shao, L. Protsailo, T. Kawamura, Y. Chen and V. Petkov, *ACS Catalysis*, 2011, 1, 562-572.
- V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R. E. Dunin-Borkowski, M.-G. Willinger and P. Strasser, *Nano letters*, 2016, 16, 1719-1725.
- Y. Li, F. Quan, L. Chen, W. Zhang, H. Yu and C. Chen, *RSC Advances*, 2014, 4, 1895-1899.
- X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl and Y. M. Wang, *Science*, 2015, 348, 1230-1234.
- 5. C. Zhang, W. Sandorf and Z. Peng, ACS Catalysis, 2015, 5, 2296-2300.
- R. Srivastava, P. Mani, N. Hahn and P. Strasser, Angewandte Chemie International Edition, 2007, 46, 8988-8991.
- R. M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero and J. M. Feliu, *Nano letters*, 2015, 15, 7473-7480.
- B. N. Wanjala, R. Loukrakpam, J. Luo, P. N. Njoki, D. Mott, C.-J. Zhong, M. Shao, L. Protsailo and T. Kawamura, *The Journal of Physical Chemistry C*, 2010, **114**, 17580-17590.
- 9. Y. Kang, J. Snyder, M. Chi, D. Li, K. L. More, N. M. Markovic and V. R. Stamenkovic, *Nano letters*, 2014, 14, 6361-6367.
- 10. M. Ishida and K. Matsutani, ECS Transactions, 2014, 64, 107-112.
- T. Tamaki, A. Minagawa, B. Arumugam, B. A. Kakade and T. Yamaguchi, *Journal of Power Sources*, 2014, 271, 346-353.
- 12. B. Arumugam, B. A. Kakade, T. Tamaki, M. Arao, H. Imai and T. Yamaguchi, *RSC Advances*, 2014, 4, 27510-27517.
- M. T. Nguyen, R. H. Wakabayashi, M. Yang, H. D. Abruña and F. J. DiSalvo, *Journal of Power Sources*, 2015, 280, 459-466.
- 14. S.-W. Chou, J.-J. Shyue, C.-H. Chien, C.-C. Chen, Y.-Y. Chen and P.-T. Chou, *Chemistry of Materials*, 2012, **24**, 2527-2533.

- 15. T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, F. Yin, X. Sun and D. Zhang, *Journal of Power Sources*, 2015, **291**, 201-208.
- 16. B. Arumugam, T. Tamaki and T. Yamaguchi, *ACS applied materials & interfaces*, 2015, 7, 16311-16321.