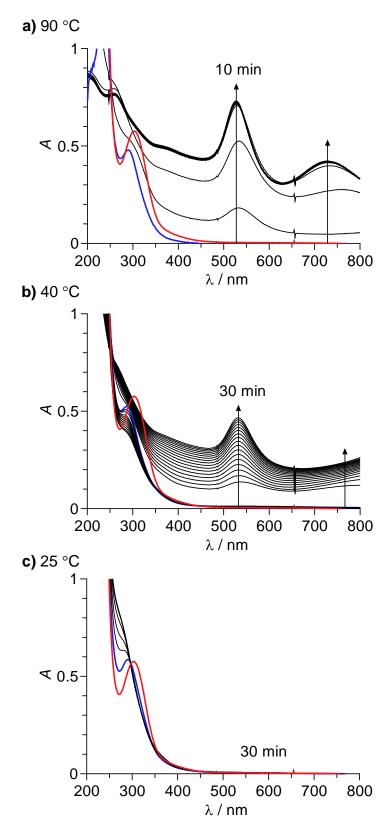
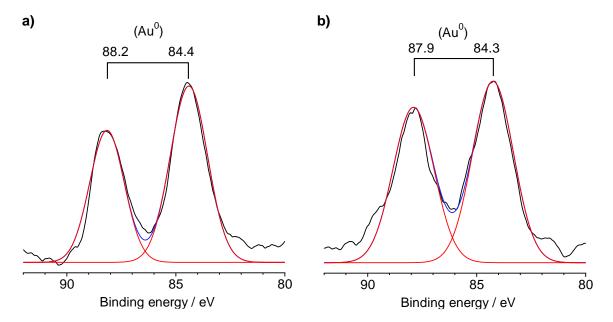
Photoreductive synthesis of monodispersed Au nanoparticles with citric acid as reductant and surface stabilizing reagent

Yasuhiro Shiraishi,*^{a,b} Haruki Tanaka,^a Hirokatsu Sakamoto,^a Satoshi Ichikawa,^c and Takayuki Hirai^a

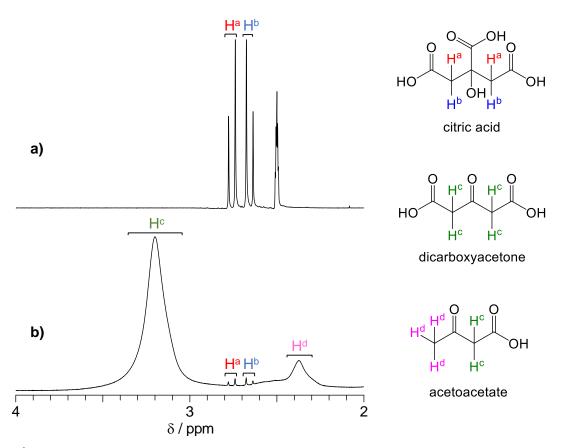
- [a] Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
- [b] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012 (Japan).
- [c] Institute for NanoScience Design, Osaka University, Toyonaka 560-8531 (Japan)

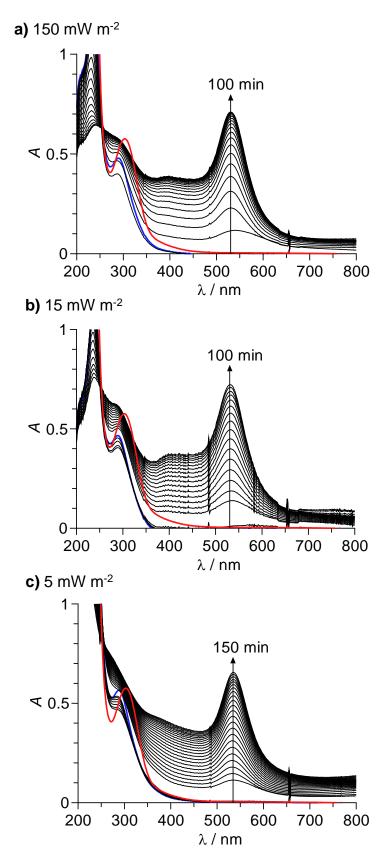

E-mail: shiraish@cheng.es.osaka-u.ac.jp

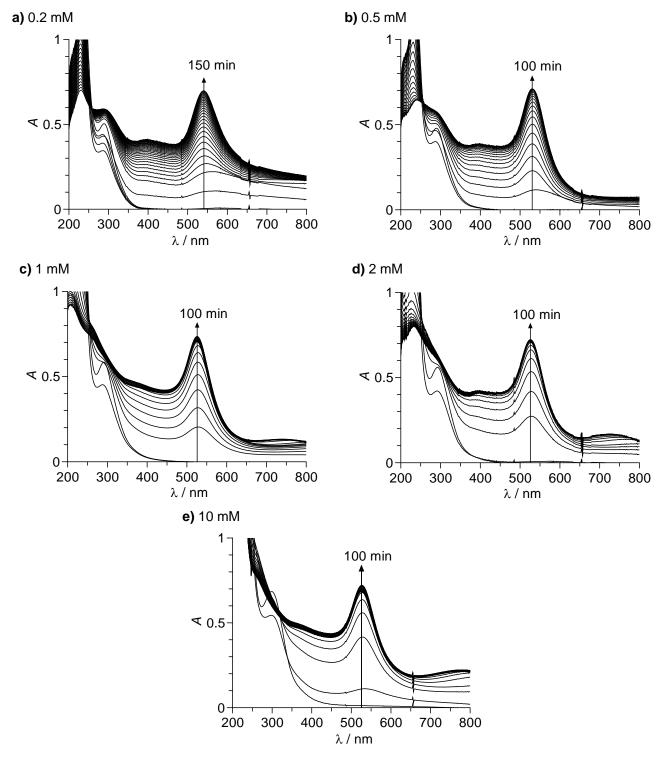
Electronic Supplementary Information (ESI†)


CONTENTS

page


Fig. S1	Effect of temperature on thermal reduction method for AuNPs preparationS	2
Fig. S2	XPS charts of AuNPs prepared by thermal reduction and photoreduction	3
Fig. S3	¹ H NMR analysis of oxidation products of citric acidS	3
Fig. S4	Effect of light intensity on photoreductive AuNPs preparationS	4
Fig. S5	Effect of citric acid amount on photoreductive AuNPs preparationS	5
Fig. S6	Effect of light wavelengths on photoreductive AuNPs preparationS	6


Fig. S1 Time-dependent change in absorption spectra of water containing HAuCl₄·4H₂O (0.2 mM) and citric acid (0.5 mM) during stirring at (a) 90 °C, (b) 40 °C and (c) 25 °C in the dark. The red is the spectrum for the solution containing HAuCl₄·4H₂O at 25 °C, and the blue is the spectrum for the solution after addition of citric acid (1 min).


Fig. S2 XPS (Au 4f level) charts of AuNPs prepared by (a) thermal reduction (60 °C, 25 min) and (b) photoreduction (25 °C, 100 min) methods. The blue line is sum of the components.

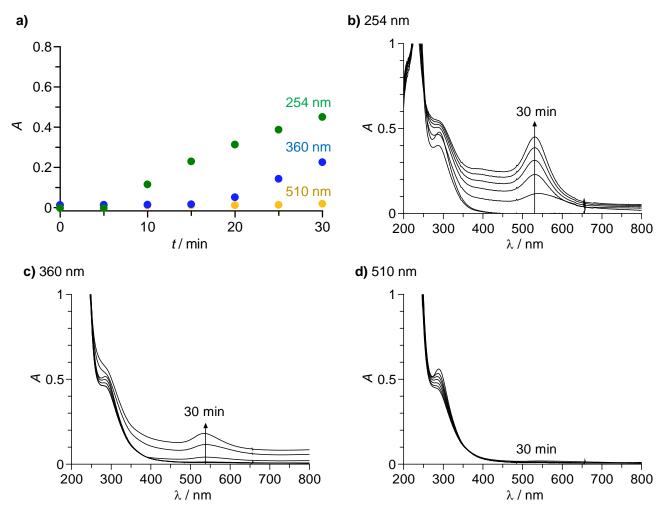

Fig. S3 ¹H NMR analysis (DMSO-d₆, 400 MHz) of (a) citric acid and (b) the oxidation products obtained after photoirradiation of water containing HAuCl₄·4H₂O (0.8 mM) and citric acid (2.0 mM) for 100 min. The AuNPs in the solution were removed by centrifugation. The resulting solution was concentrated by evaporation and dissolved in DMSO-d₆. The ratio of citric acid, dicarboxyacetone and acetoacetate was determined to be 2:55:10.

Fig. S4 Time-dependent change in absorption spectra of water containing HAuCl₄·4H₂O (0.2 mM) and citric acid (0.5 mM) during stirring at 25 °C under 254 nm irradiation at different light intensity. The red is the spectrum for the solution containing HAuCl₄·4H₂O at 25 °C, and the blue is the spectrum for the solution after addition of citric acid (1 min).

Fig. S5 Time-dependent change in absorption spectra of water containing HAuCl₄·4H₂O (0.2 mM) and different amount of citric acid during stirring at 25 °C under 254 nm irradiation (light intensity: 150 mW m⁻²).

Fig. S6 Time-dependent change in (a) the LSPR absorbance and (b-d) absorption spectra of water containing HAuCl₄·4H₂O (0.2 mM) and citric acid (0.5 mM) obtained by stirring at 25 °C under light irradiation at different light wavelengths (light intensity: 150 mW m⁻²).