Supporting Information

Enhanced Capacity and Cycle Life of Nitrogen-doped Charcoal Anode for the Lithium Ion Battery: A Solvent-free Approach

Chandrasekar M Subramaniyam^{a,b}, N. R. Srinivasan^c, Zhixin Tai^a, Hua Kun Liu^{a,*}, Shi Xue Dou^a ^a Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500 Australia

^b Texas Materials Institute, Department of Mechanical Engineering, University of Texas Austin, 204 E Dean Keeton St., C2200, Austin, Texas 78712 USA

^c Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 India

*Corresponding author Email: hua@uow.edu.au (Prof. Hua Kun Liu)

Fig. S1 Thermogravimetric analysis of activated charcoal (R-AC)

Fig. S2 Charge-discharge plots at different cycle number of (a) R-AC, (b) N-AC, and (c) NH-AC obtained at 50 mAg⁻¹.

Fig. S3 Rate plot of NH-AC obtained at different current densities.