Supporting Information

Nitrogen Doped Graphite Felt Decorated with Porous Ni_{1.4}Co_{1.6}S₄

Nanosheets for 3D Pseudocapacitor Electrodes

Xiang Zhang, Yuying Zheng*, Jun Zhou, Wenqing Zheng, Dongyang Chen*

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China

E-mails: yyzheng@fzu.edu.cn (Y. Zheng); dongyang.chen@fzu.edu.cn (D. Chen)

Table of Contents

Figure S1. Raman spectroscopy of the NGF-0-900 NGF-0.06-900, NGF-0.08-900, NGF-0.1-900 and
NGF-0.12-9001
Figure S2. CV curves of the NGF-0.06-900, NGF-0.08-900, NGF-0.1-900 and NGF-0.12-9001
Figure S3. Nitrogen adsorption-desorption isotherm of the NGF-0.1-800, NGF-0.1-900 and NGF-0.1-
10002
Figure S4. FT-IR spectrum of the NGF-0.1-900 after acidification2
Figure S5. CV curves of the NiCo ₂ S ₄ /NGF, Ni _{1.4} Co _{1.6} S ₄ /NGF and Ni _{1.8} Co _{1.2} S ₄ /NGF at 10 mV s ⁻¹ 3
Figure S6. CP curves of the NiCo ₂ S ₄ /NGF, Ni _{1.4} Co _{1.6} S ₄ /NGF and Ni _{1.8} Co _{1.2} S ₄ /NGF at 1 A g ⁻¹ 3
Figure S7. SEM image of the Ni _{1.4} Co _{1.6} S ₄ /NGF after galvanostatic charge/discharge at a current
density of 20 A g ⁻¹ for 2000 cycles4
Figure S8. SEM image of the pure $Ni_{1.4}Co_{1.6}S_4$ 4
Table S1. Nitrogen contents of the NGF-0.1-800, NGF-0.1-900, and NGF-0.1-1000
Table S2. BET specific surface areas, BJH pore volume and pore diameter of the NGF-0.1-800, NGF-
0.1-900, and NGF-0.1-1000

Figure S1. Raman spectroscopy of the NGF-0-900 NGF-0.06-900, NGF-0.08-900, NGF-0.1-900 and NGF-0.12-900. The broad peaks of D band and the highest I_D / I_G value (1.37) of the NGF-0.1-900 indicate a largest degree of defects in NGF-0.1-900 compared to other samples.

Figure S2. CV curves of the NGF-0.06-900, NGF-0.08-900, NGF-0.1-900 and NGF-0.12-900. The largest enclosed area of the NGF-0.1-900 represents highest capacity.

Figure S3. Nitrogen adsorption-desorption isotherm of the NGF-0.1-800, NGF-0.1-900 and NGF-0.1-

1000. The hysteresis loops suggest the mesoporous property of all samples.

Figure S4. FT-IR spectrum of the NGF-0.1-900 after acidification. The appearance of the oxygen

groups absorption peaks demonstrates the successful acidification of the NGF.

Figure S5. CV curves of the NiCo₂S₄/NGF, Ni_{1.4}Co_{1.6}S₄/NGF and Ni_{1.8}Co_{1.2}S₄/NGF at 10 mV s⁻¹. The highest redox peaks position along with the largest enclosed area indicate the best electrochemical performance when the molar ratio of Ni : Co is 1.4 : 1.6.

Figure S6. CP curves of the NiCo₂S₄/NGF, Ni_{1.4}Co_{1.6}S₄/NGF and Ni_{1.8}Co_{1.2}S₄/NGF at 1 A g⁻¹. This data indicates that the specific capacitance of the Ni_{1.4}Co_{1.6}S₄/NGF is the largest compared to those of the other samples on account of the longest discharge time.

Figure S7. SEM image of the $Ni_{1.4}Co_{1.6}S_4/NGF$ after galvanostatic charge/discharge at a current density of 20 A g⁻¹ for 2000 cycles. The interconnected sheet-like morphology was well maintained and there only generated a small range of collapse.

Figure S8. SEM image of the pure Ni_{1.4}Co_{1.6}S₄. A wide range of size distribution can be observed.

Electrode	Nitrogen content (%)		
	Graphitic-N	Pyrrolic-N	Pyridinic-N
NGF-0.1-800	10.9	89.1	0
NGF-0.1-900	65.6	12.6	21.8
NGF-0.1-1000	74.6	18.2	7.2

Table S1. Nitrogen contents of the NGF-0.1-800, NGF-0.1-900, and NGF-0.1-1000.

Table S2. BET specific surface area, BJH pore volume and pore diameter of the NGF-0.1-800, NGF-

Electrode	BET specific	BJH pore volume	BJH pore diameter
	surface area (m ² g ⁻¹)	$(cm^3 g^{-1})$	(nm)
NGF-0.1-800	56.78	0.13	3.42
NGF-0.1-900	47.15	0.16	3.84
NGF-0.1-1000	41.42	0.17	4.17

0.1-900, and NGF-0.1-1000.

.