SUPPLEMENTARY INFORMATION

Synthesis and Biological Evaluation of Novel Technetium-99m-Labeled

Phenylquinoxaline Derivatives as Single Photon Emission Computed Tomography

Imaging Probes Targeting β-Amyloid Plaques in Alzheimer's Disease.

Shimpei Iikuni,[†] Masahiro Ono,^{*,†} Keiichi Tanimura,[†] Hiroyuki Watanabe,[†] Masashi

Yoshimura,[†] Hideo Saji[†]

[†]Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

*To whom correspondence should be addressed: Phone: +81-75-753-4608, Fax: +81-75-753-4568, e-mail: ono@pharm.kyoto-u.ac.jp.

Supplementary Figure S1. Typical HPLC profiles of Re-BAT-C3-PQ-1 (A), Re-BAT-

C3-PQ-2 (B), and Re-BAT-C3-PQ-3 (C). The analyses are performed on a Cosmosil C_{18} column (5 C_{18} -AR-II, 4.6 × 150 mm) with a solvent of H₂O/MeCN [11:9 (0 min) to

1:3 (30 min)] as the mobile phase at a flow rate of 1 mL/min.

Supplementary Figure S2. Chemical structure and ¹H NMR spectra for compound 9 (Re-BAT-C3-PQ-1).

Supplementary Figure S3. Chemical structure and ¹H NMR spectra for compound 10

(Re-BAT-C3-PQ-2).

Supplementary Figure S4. Chemical structure and ¹H NMR spectra for compound 13

(Re-BAT-C3-PQ-3).