Supplementary information for:

Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl acetate)

Shiyu Geng,^a Faiz Ullah Shah,^b Peng Liu,^a Oleg N. Antzutkin,^{b,c} and Kristiina Oksman^{*a,d}

^aDivision of Materials Science, Department of Engineering Sciences and Mathematics, Luleå

University of Technology, SE-971 87, Luleå, Sweden

^bChemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden

^cDepartment of Physics, University of Warwick, Coventry, UK

^dFibre and Particle Engineering, University of Oulu, Finland

Fig. S1 400.21 MHz ¹H NMR spectra of PVAc-4 (**a**), PVAc-9.3 (**b**) and PVAc-11 (**c**) dissolved in DMSO- d_6 at 40 °C. Resonance lines in the ranges A and B were assigned to the acetate protons and the methylene protons, respectively, in the partially hydrolyzed PVAc. The hydrolysis degrees of the samples were calculated according to the equation:

$$Hydrolysis \ degree \ (\%) = 100 - \frac{acetate \ protons \ (A)}{3} / \frac{methylene \ protons \ (B)}{2}$$

Fig. S2 100.64 MHz ¹³C NMR spectra of PVAc-4 (**a**), PVAc-9.3 (**b**) and PVAc-11 (**c**) dissolved in DMSO- d_6 at 40 °C. Resonance lines of $-CH_3$, $-CH_2$, -CHO and -COO carbons in the partially hydrolyzed PVAc are located in the positions A, B, C and D, respectively.

Fig. S3 Solid-state 100.64 ¹³C CP-MAS NMR spectra of the native PVAc samples prepared in different pH conditions.

Sample coding	Toughness (J/m ³)
PVAc-4	1.96 × 10 ⁷
X0.5PVAc-4	2.05×10^{7}
X1PVAc-4	1.64 × 10 ⁷
X1.5PVAc-4	1.28 × 10 ⁷
X2PVAc-4	0.82 × 10 ⁷
X3PVAc-4	1.31 × 10 ⁷
PVAc-9.3	1.75 × 10 ⁷
X0.5PVAc-9.3	1.82 × 10 ⁷
X1PVAc-9.3	1.15 × 10 ⁷
X1.5PVAc-9.3	1.40 × 10 ⁷
X2PVAc-9.3	1.63 × 10 ⁷
X3PVAc-9.3	2.19 × 10 ⁷
PVAc-11	1.61 × 10 ⁷
X0.5PVAc-11	1.47 × 10 ⁷
X1PVAc-11	1.44 × 10 ⁷
X1.5PVAc-11	1.34 × 10 ⁷
X2PVAc-11	0.21 × 10 ⁷
X3PVAc-11	0.36 × 10 ⁷

Table S1 Toughness of all samples characterized by tensile testing in this study.