Supplementary Information

Residual oxygen groups in nitrogen-doped graphene to

enhance the capacitive performance

Mengying Yu^a, Bingqiao Xie^a, Yang Yang^a, Yong Zhang^b, Ying Chen^{a,*}, Weiye Yu^a,

Shanshan Zhang^a, Luhua Lu^{a,*}, Dong Liu^c

^a Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 388 Lumo RD, Wuhan 430074, China

^b School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China

c Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China

*Corresponding author: Tel: +86-027-67884292(Y.Chen; L.H. Lu); E-mail addresses: <u>chenying@cug.edu.cn</u>, lhlu@cug.edu.cn(L.H. Lu).

Synthesis of graphene reduced by urea

The GO (0.05 g) was dispersed in deionised water (DI) (70mL), which contained 5g urea, followed by ultrasonic for 30min to make a homogeneous precursor solution. Then, the precursor solution was reacted under hydrothermal treatment for 12 h at 170°C, and black product was obtained. The mixture was washed several times with DI water to make the pH=7, and the as-prepared black product was allowed to dry by freeze- drying. The resultant powder was labelled as NG-U.

Table S1: pH values of the solution	before and after the reaction
-------------------------------------	-------------------------------

Sample	pH		
	Before	After	$\Delta \mathrm{pH}$
	hydrothermal	hydrothermal	
NG1	7.78	7.42	0.36
NG2	9.53	9.25	0.28
NG3	13.94	13.79	0.15
NG-U	7.43	9.31	1.88

Carbon type	N _{XPS} (at.%)	Electrodes	Electrolyte	Current density (A g ⁻¹)	Capacitance (F g ⁻¹)	Ref.
N-doped graphene	1.0	Three	6M KOH	3	246	S 1
N-doped graphene	10.1	Three	6M KOH	5	298	S2
N- and O- carbon	4	Three	1M H ₂ SO ₄	1	390	- \$3
				10	218	
N-doped graphene	10.13	Three	6M KOH	0.2	326	S4
N- Porous Carbon Spheres 3	2.55	Three	1M H ₂ SO ₄	1	388	- S5
	3.33	Infee		20	272	
N-doped graphene	6.85	Two	1M H ₂ SO ₄	1	242	- S6
				20	200	
N-doped graphene	5.86	Three	6M KOH	1	326	S7
Hierarchical	1.(2) T	Three	6M KOH	0.5	314	- S8
porous carbons	1.02	Three		20	237	
N-doped egg-	13	Three	6М КОН	0.5	355	- 59
box-like carbons	1.5	Three		50	230	67
N-doped porous	N-doped porous 7.72 Three 6M KOH graphitic carbon	6М КОН	1	293	- \$10	
graphitic carbon		Thee		30	157	510
N-doped carbon	7 0	Тжо	6M KOH	1	313	- \$11
nanocages	1.)	Two		100	234	511
N-doped porous carbon	6.2 Three	Three	2M KOH	0.5	255	- S12
		Thice		10	192	
N-doped graphene	7.71 Th	Three	6М КОН	0.5	334	- S13
		Infee		20	210	
N-doped graphene	8.56	Three	6М КОН	1	399	- Our work
				20	290.8	
		Two	6M KOH	5	280	-

Table S2: Comparison of specific capacitance of nitrogen-doped carbon-based materials

Figure S1 XPS survey (a), high resolution C 1s peak (b) and high resolution N 1s peak (c) of NG-U

Figure S2 GCD curves (a) and the specific capacitance (b) at various current densities of NG-U.

Figure S3 CV curves at various scanning rates and GCD curves at different current densities of NG1(a, b), NG2(c, d) and NG3(e, f).

Fig.S4 Variation of the imaginary part of capacitance, Im(C), with the modulation frequency for NGs based on the impedance data shown in Fig. 5a

References

- T. Wang, L. Wang, D. Wu, W. Xia, H. Zhao and D. Jia, *Journal of Materials Chemistry A*, 2014, 2, 8352.
- S2. H. Zhang, T. Kuila, N. H. Kim, D. S. Yu and J. H. Lee, Carbon, 2014, 69, 66-78.
- S3. L. Zhou, H. Cao, S. Zhu, L. Hou and C. Yuan, Green Chem., 2015, 17, 2373-2382.
- S4. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li and H. Fu, *RSC Advances*, 2012, 2, 4498.
- S5. N. P. Wickramaratne, J. T. Xu, M. Wang, L. Zhu, L. M. Dai and M. Jaroniec, *Chemistry Of Materials*, 2014, 26, 2820-2828.
- D. Wang, Y. Min, Y. Yu and B. Peng, *Journal of colloid and interface science*, 2014, 417, 270-277.
- S7. H. L. Guo, P. Su, X. F. Kang and S. K. Ning, *Journal Of Materials Chemistry A*, 2013, 1, 2248-2255.
- S8. L. Yao, G. Z. Yang, P. Han, Z. H. Tang and J. H. Yang, *Journal Of Power Sources*, 2016, 315, 209-217.
- S9. Y. Cai, Y. Luo, Y. Xiao, X. Zhao, Y. Liang, H. Hu, H. Dong, L. Sun, Y. Liu and M. Zheng, ACS applied materials & interfaces, 2016, 8, 33060-33071.
- S10. L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang and H. Fu, *Chemistry A European Journal*, 2014, **20**, 564-574.
- S11. J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin, Y. Ma, J. Liu and Z. Hu, *Advanced Materials*, 2015, 27, 3541-3545.
- S12. G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao and Z. Lei, *Bioresour. Technol.*, 2015, 197, 137-142.
- S13. X. Zhao, H. Dong, Y. Xiao, H. Hu, Y. Cai, Y. Liang, L. Sun, Y. Liu and M. Zheng, *Electrochimica Acta*, 2016, 218, 32-40.