Supporting information

Effects of Rh-doping on the Photooxidative Degradation Activity of

Titanate Nanosheets

Wasusate Soontornchaiyakul,^a Takuya Fujimura^a, Hisanao Usami^b, and Ryo Sasai^{a*}

^a Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060, Nishi-kawatsu-cho, Matsue, 690-8501, Shimane, Japan. Email: rsasai@riko.shimane-u.ac.jp TEL/FAX: +81-852-32-6402 (Ext. 6103)

^b Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, 386-0018, Nagano, Japan.

**Corresponding Authors

Fig. S1. The schematic of $H_2Ti_3O_7$ crystal shows the monoclinic crystal system which the space group is P2/m.

Fig. S2. XRD patterns of synthesized Na₂Ti_{3-x}Rh_xO₇, • is the peak of the unknown.

Fig. S3. A) XRD patterns of synthesized $H_2Ti_{3-x}Rh_xO_7$. And, B) The XRD patterns of the non-exfoliated TiNS:Rh10 compared with $H_2Ti_{3-x}Rh_xO_7$ (TiNS:Rh10). • is the peak of the unknown.

Fig. S4. shows the AFM image and its cross sectional profiles of TiNS:Rh0 on Si substrate. The sample was prepared by dipping a Si substrate in the TiNS:Rh0 colloidal solution (pH 11) overnight, then washed and dried under vacuum condition. A-B showed the cross section of TiNS 1 sheet. The thickness value of 1 sheet (~1.5-1.6 nm) is 2 times larger than its theoretical value (~0.7 nm), because of TMA+ ion on TiNS surface. C-D showed cross section of overlapped 2 sheets. The thickness value of overlapped 2 sheets is about 2 times larger than 1 sheet.

Fig. S5. shows XPS spectra of Ti 2p and Rh 3d for TiNS:Rh0 and TiNS:Rh10. The peak intensity of Ti $2p_{1/2}$ and $2p_{3/2}$ decreased after it was doped, this shows that the Rh replaced in the Ti site.

Fig. S6. XPS spectra of Rh 3d5/2, with fit for Rh³⁺ (308.9 eV) and its oxidized state, Rh⁴⁺ (309.9 eV) according to the several authors reported.^{s1-s2} It also has been found that the binding energy of Rh³⁺ is a little bit higher than Rh₂O₃.^{s3} This showed that Rh³⁺ and Rh⁴⁺ were doped in the lattice of TiNS.

References

- s1. M. E. E. Grass, Y. Zhang, D. R. Butcher, J. Y. Park, Y. Li, H. Bluhm, K. M. Bratlie, T. Zhang and G. A. Somorjai, *Angew. Chem. Int. Ed.*, 2008, **47**, 8893–8896.
- s2. S. M. Kim, K. Qadir, B. Seo, H. Y. Jeong, S. H. Joo, O. Terasaki and J. Y. Park, *Catal. Lett.*, 2013, **143**, 1153–1161.
- s3. L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii and A. I. Boronin, *J. Phys. Chem. C*, 2016, **120**, 19142–19150.