Design, synthesis, and biological evaluation of oxazolidone derivatives as highly potent *N*-Acylethanolamine acid amidase (NAAA) inhibitors

Jie Ren^a, Yuhang Li^{a,b*},Hongwei Ke^c, Yanting Li^a, Longhe Yang^d, Helin Yu^a, Rui Huang^a, Canzhong Lu^b, Yan Qiu^{a*}

a Medical College, Xiamen University, Xiamen, Fujian 361102, P. R. China;

b Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian 361005, P. R. China;

c College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, 361005, P. R. China;

d Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, P. R. China;

Corresponding authors:

Yuhang Li, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian 361005, P. R. China. Email: yuhangli@fjirsm.ac.cn

Y Qiu, Medical College, Xiamen University, 361102 Xiamen, Fujian, P. R. China. Email: yanqiu@xmu.edu.cn.

Supplemental Experimental Procedures

Supplementary Tables

- Table S1 Inhibitory activities of compounds 1k–1u towards NAAA and FAAH
- Table S2 Inhibitory activities of compounds 3k–3s towards NAAA and FAAH
- Table S3 Purity of the new synthesized compounds

Supplementary Figures

- Figure S1 Characterization of 2f as a reversible and noncompetitive NAAA inhibitor
- Figure S2 Effects of NAAA inhibitor on body weight and food intake
- Figure S3 Assessment of gastric mucosa injury caused by NAAA and COX inhibitors
- Figure S4 The inhibition of hERG channels by 2f and cisapride in CHO cells
- Figure S5¹ H and ¹³ C NMR spectra of compounds

Reference

Supplemental Experimental Procedures

1-Pentadecanyl-carbonyl pyrrolidine (1a)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 5), the amidation of palmitoyl chloride with pyrrolidine afford **1a** (83 mg; yield: 89%) as white crystals: mp 84.0–84.6°C; IR (film)v_{max}: 2923, 2852, 1648, 1426 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.60–1.67 (m, 2 H), 1.81–1.88 (m, 2 H), 1.91–1.98 (m, 2 H), 2.25 (t, J = 8 Hz, 2 H), 3.39–3.47 (m, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 24.4, 24.9, 26.1, 29.3, 29.43, 29.49, 29.52, 29.62, 29.64, 31.9, 34.8, 45.5, 46.6, 171.8 ppm; MS (ESI, m/z): 310 (M + H)⁺.

(R)-tert-butyl 1-palmitoylpyrrolidin-3-ylcarbamate (1c-1)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 3), the amidation of palmitoyl chloride with (R)–tert–butyl pyrrolidin–3–ylcarbamate afford **1c–1** (108 mg; yield: 85%) as white crystals: mp: 47.3–49.0 °C; $[\alpha]_D^{20}$ 41 (c 0.5, CHCl₃); IR (film) ν_{max} : 3329, 2955, 2918, 2849, 1684, 1631, 1566, 1541, 1446, 1309, 1249 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.45 (S, 9 H), 1.58–1.65 (m, 2 H), 1.76–1.98 (m, 1 H), 2.10–2.26 (m, 3 H), 3.27–3.37 (m, 1 H), 3.47–3.58 (m, 2 H), 3.65–3.73 (m, 1 H), 4.22 (br, 1 H), 4.74–4.82 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 24.8, 24.9, 28.3, 29.3, 29.4, 29.5, 29.6, 30.3, 31.9, 32.4, 34.3, 34.8, 43.6, 44.6, 49.3, 50.8, 51.1, 52.6, 79.9, 155.2, 155.3, 172.1 ppm; MS (ESI, m/z): 425 (M + H)⁺; Anal. calcd for C₂₅H₄₈N₂O₃: C, 70.71; H, 11.39; N, 6.60; Found: C, 70.97; H, 11.41; N, 6.58.

(R)-1-(3-aminopyrrolidin-1-yl)hexadecan-1-one (1c)

Following the **General Procedure C** (eluent: MeOH: $CH_2Cl_2 = 1:15$), the reaction of **1c–1** afford **1c** (41 mg, 90%) as white crystals, mp: 39.6–41.1 °C; $[\alpha]_D^{20}$ –12.5 (c 0.2, CH₃OH); IR (film) ν_{max} : 3120, 2923, 2857, 1634, 1454, 1371, 1329, 1222, 1190, 1108 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 0.94 (t,J = 6.4 Hz, 3 H), 1.33–1.37 (m, 24 H), 1.62–1.67 (m, 2 H), 1.95–2.08 (m, 1 H), 2.22–2.39 (m, 3 H), 3.43–3.82 (m, 5 H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 13.1, 22.3, 24.5, 24.6, 29.1, 29.2, 29.3, 29.4, 30.1, 31.2, 31.7, 33.7, 34.1, 43.5, 44.4, 49.1, 50.6, 50.7, 51.9, 173.0, 173.3 ppm; MS (ESI, m/z): 325 (M + H)⁺; Anal. calcd for C₂₀H₄₀N₂O: C, 74.02; H, 12.42; N, 8.63; Found: C, 74.06; H, 12.45; N, 8.62.

(S)-tert-butyl 1-palmitoylpyrrolidin-3-ylcarbamate (1d-1)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 3), the amidation of palmitoyl chloride with (S)–tert–butyl pyrrolidin–3–ylcarbamate afford **1d–1** (117 mg; yield: 92%) as white crystals, mp: 42.0–43.0 °C; $[\alpha]_D^{20}$ –39 (c 0.4, CHCl₃); IR (film) ν_{max} : 3330, 2955, 2918, 2850, 1684, 1630, 1566, 1541, 1446, 1309, 1249 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t,J = 7.2 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.45 (S, 9 H), 1.58–1.65 (m, 2 H), 1.76–1.98 (m, 1 H), 2.10–2.26 (m, 3 H), 3.27–3.37 (m, 1 H), 3.47–3.58 (m, 2 H), 3.65–3.73 (m, 1 H), 4.22 (br, 1 H), 4.74–4.82 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 24.8, 24.9, 28.3, 29.3, 29.4, 29.5, 29.6, 30.3, 31.9, 32.4, 34.3, 34.8, 43.6, 44.6, 49.3, 50.8, 51.1, 52.6, 79.9, 155.2, 155.3, 172.1 ppm; MS (ESI, m/z): 425 (M + H)⁺;Anal. calcd for C₂₅H₄₈N₂O₃: C, 70.71; H, 11.39; N, 6.60; Found: C, 70.99; H, 11.40; N, 6.59.

(S)-1-(3-aminopyrrolidin-1-yl)hexadecan-1-one (1d)

Following the **General Procedure C** (eluent: MeOH: $CH_2Cl_2 = 1:15$), the reaction of **1d–1** with CF₃COOH afford **1d** (34 mg, 74%) as white wax; $[\alpha]_D^{20}$ 12.5 (c 0.1, CH₃OH); IR (film) ν_{max} : 3120, 2923, 2857, 1634, 1454, 1371, 1329, 1222, 1190, 1108 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 0.94 (t, J = 6.4 Hz, 3 H), 1.33–1.37 (m, 24 H), 1.62–1.67 (m, 2 H), 1.95–2.08 (m, 1 H), 2.22–2.39 (m, 3 H), 3.43–3.82 (m, 5 H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 13.0, 22.3, 24.5, 24.6, 29.1, 29.2, 29.3, 29.4, 30.1, 31.2, 31.7, 33.7, 34.1, 43.5, 44.4, 49.1, 50.6, 50.7, 51.9, 173.0, 173.3 ppm; MS (ESI, m/z): 325 (M + H)⁺; Anal. calcd for C₂₀H₄₀N₂O: C, 74.02; H, 12.42; N, 8.63; Found: C, 74.02; H, 12.43; N, 8.64.

(R)-1-(2-methylpyrrolidin-1-yl)hexadecan-1-one (1e)

Following the **General Procedure D** (eluent: EtOAc/PE 1: 5), the reaction starting from **1q** afford **1e** (35 mg, 52%) as white wax; $[\alpha]_D^{20}$ –27.9 (c 0.1, CDCl₃); IR (film) ν_{max} : 2956, 2921, 2850, 1649, 1460, 1418 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.18 (d, J = 6.3 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.55–1.70 (m, 3 H), 1.84–2.07 (m, 3 H), 2.20–2.33 (m, 2 H), 3.34–3.50 (m, 2 H), 3.96–4.24 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 19.5, 21.2, 21.8, 22.6, 23.9, 24.8, 25.5, 29.3, 29.4, 29.5, 29.6, 29.6, 31.9, 33.2, 34.2, 35.0, 45.3, 46.8, 52.5, 53.0, 171.5, 171.7 ppm; MS (ESI, m/z): 324 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO: C, 77.95; H, 12.77; N, 4.33; Found: C, 77.93; H, 12.79; N, 4.34.

(S)-1-(2-methylpyrrolidin-1-yl)hexadecan-1-one (1f)

Following the **General Procedure D** (eluent: EtOAc/PE 1: 5), the reaction starting from **1r** afford compound **1f** (41 mg, 63%) as yellow wax; $[\alpha]_D^{20} 27.9$ (c 0.1, CDCl₃); IR (film) ν_{max} : 2949, 2919, 2850, 1620, 1578, 1544, 1466 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.18 (d, J = 6.3 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.55–1.70 (m, 3 H), 1.84–2.07 (m, 3 H), 2.20–2.33 (m, 2 H), 3.34–3.50 (m, 2 H), 3.96–4.24 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 19.5, 21.2, 21.8, 22.6, 23.9, 24.8, 25.5, 29.3, 29.4, 29.5, 29.6, 29.6, 31.9, 33.2, 34.2, 35.0, 45.3, 46.8, 52.5, 53.0, 171.5, 171.7 ppm; MS (ESI, m/z): 324 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO: C, 77.95; H, 12.77; N, 4.33; Found: C, 77.94; H, 12.79; N, 4.34.

1-palmitoylpyrrolidin-2-one (1g)

To a solution of pyrrolidin-2-one (44 mg, 0.5 mmol) in THF (5 mL) was added slowly a solution of 2.5 M n-BuLi (0.55 mmol, 0.2 mL hexane) under nitrogen atmosphere at -78°C. After being stirred at the same temperature for 10 min, a solution of palmitoyl chloride (151 mg, 0.55 mmol) in THF (2 mL) was slowly added. The reaction mixture was stirred at -78° C for 0.5 hours, and allowed to warm slowly to room temperature in 5 hours. The reaction was guenched with 1.0 mL a sat. aqueous solution of NH₄Cl and extracted with EtOAc (3×5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford 1g (92 mg; yield: 57%) as white crystals, mp: 71.9-72.6 °C; IR (film)v_{max}: 2916, 2841, 1728, 1682, 1465, 1398, 1256 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26–1.31 (m, 24 H), 1.59–1.66 (m, 2 H), 1.99–2.07 (m, 2 H), 2.59 (t, J = 8.0 Hz, 2 H), 2.88 (t, J = 8.0 Hz, 2 H), 3.80 (t, J = 8.0 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 17.1, 22.5, 24.1, 29.1, 29.2, 29.3, 29.4, 29.5, 29.5, 29.5, 31.8, 33.6, 36.7, 45.3, 174.3, 175.1 ppm; MS (ESI, m/z): 324 (M + H)⁺; Anal. calcd for C₂₀H₃₇NO₂: C, 74.25; H, 11.53; N, 4.33. Found: C, 75.44;

H, 11.47; N, 8.33.

1-palmitoylimidazolidin-2-one (1h)

To a suspension of NaH (60% in mineral oil, 60 mg) in anhydrous THF (5 mL), was added slowly a solution of 2-Imidazolidinone hemihydrates (48 mg, 0.5 mmol) in THF (5 mL) under nitrogen atmosphere at -20° C. After being stirred at the same temperature for 10 min, a solution of palmitovl chloride (151 mg, 0.55 mmol) in THF (2 mL) was slowly added. The reaction mixture was stirred at -20° C for 0.5 hours, and allowed to warm slowly to room temperature in 5 hours. The reaction was quenched with 1.0 mL a sat. aqueous solution of NH₄Cl and extracted with EtOAc (3 \times 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 2) to afford 1h (71 mg; yield: 44%) as white crystals, mp: 114.5–116.8 °C; IR (film)v_{max}: 3249, 2916, 2841,1738, 1677 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.25–1.33 (m, 24 H), 1.61-1.68 (m, 2 H), 2.91 (t, J = 6.8 Hz, 2 H), 3.48 (t, J = 8.0 Hz, 2 H), 3.95 (t, J = 8.0 Hz, 2 H), 5.28 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.7, 24.7, 29.2, 29.3, 29.4, 29.5, 29.7, 31.9, 35.2, 36.5, 42.3, 156.7, 174.0 ppm; MS (ESI, m/z): 325 $(M + H)^+$; Anal. calcd for C₁₉H₃₆N₂O₂: C, 70.32; H, 11.18; N, 8.63. Found: C, 70.52; H, 11.16; N, 8.64.

3-palmitoyloxazolidin-2-one (1i)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of palmitoyl chloride with oxazolidin–2–one afford **1i** (83 mg; yield: 51%) as white crystals, mp: 92.2–93.8 °C; IR (film) v_{max} : 2914, 2846, 1765, 1699, 1386 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.26–1.32 (m, 24 H), 1.62–1.69 (m, 2 H), 2.91 (t, J = 7.6 Hz, 2 H), 4.02 (t, J = 8.0 Hz, 2 H), 4.41 (t, J = 8.0 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.2, 29.1, 29.3, 29.4, 29.5, 29.6, 29.6, 31.8, 35.0, 42.5, 61.9, 153.5, 173.5 ppm; MS (ESI, m/z): 326 (M + H)⁺; Anal. calcd for C₁₉H₃₅NO₃: C, 70.11; H, 10.84; N, 4.30. Found: C, 70.13; H, 10.86; N, 4.32.

(R)-1-(3-hydroxypyrrolidin-1-yl)hexadecan-1-one (1j)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 2), the amidation of palmitoyl chloride with (R)–pyrrolidin–3–ol afford **1j** (64 mg; yield: 66%) as white crystals, mp: 58.8–59.5 °C; $[\alpha]_D^{20}$ –10.3 (c 0.7, CHCl₃); IR (film)v_{max}: 3380, 2923, 2847, 1622, 1462, 1377, 1338, 1226 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.4 Hz, 3 H), 1.26–1.30 (m, 24 H), 1.69–1.77 (m, 2 H), 1.93–1.98 (m, 1 H), 2.00–2.05 (m, 1 H), 2.19–2.28 (m, 2 H), 3.36–3.45 (m, 5 H), 4.49 (d, J = 20.8 Hz, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.8, 29.2, 29.4, 29.4, 29.5, 29.6, 31.9, 32.9, 34.2, 34.6, 34.8, 43.5, 44.6, 54.1, 54.8, 69.2, 70.8, 172.3, 172.5 ppm; MS (ESI, m/z): 326 (M + H)⁺; Anal. calcd for C₂₀H₃₉NO₂: C, 73.79; H, 12.08; N, 4.30; Found: C, 73.92; H, 12.11; N, 4.29.

(S)-1-(3-hydroxypyrrolidin-1-yl)hexadecan-1-one (1k)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 2), the amidation of palmitoyl chloride with (S)–pyrrolidin–3–ol afford **1k** (77 mg; yield: 79%) as white crystals, mp: 51.5–53.8 °C; $[\alpha]_D^{20}$ 10.3 (c 0.7, CHCl₃); IR (film)v_{max}: 3379, 2923, 2847, 1622, 1463, 1376, 1338, 1226 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.4 Hz, 3 H), 1.25–1.29 (m, 24 H), 1.62–1.66 (m, 2 H), 1.93–1.98 (m, 1 H), 2.00–2.05 (m, 1 H), 2.21–2.28 (m, 2 H), 3.41–3.68 (m, 5 H), 4.48 (d, J = 12.8 Hz, 1 H) ppm; ¹³C

NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.8, 29.3, 29.4, 29.4, 29.5, 29.6, 31.8, 32.9, 34.2, 34.6, 34.8, 43.5, 44.6, 54.2, 54.8, 69.3, 70.9, 172.3, 172.5 ppm; MS (ESI, m/z): 326 (M + H)⁺; Anal. calcd for C₂₀H₃₉NO₂: C, 73.79; H, 12.08; N, 4.30; Found: C, 73.84; H, 12.10; N, 4.31.

(R)-1-(3-methoxypyrrolidin-1-yl)hexadecan-1-one (11)

Following the **General Procedure B** (eluent: EtOAc/PE 1: 10), the reaction of **1j** with CH₃I afford **1l** (17 mg; yield: 81%) as colorless oil; $[\alpha]_D{}^{20}-45.1$ (c 0.2, CHCl₃); IR (film) ν_{max} : 2950, 2919, 2850, 1646, 1459, 1429, 1371, 1102 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.25–1.29 (m, 24 H), 1.60–1.66 (m, 2 H), 1.85–2.09 (m, 2 H), 2.21–2.28 (m, 2 H), 3.33 (d, J = 8.0 Hz, 3 H), 3.42–3.69 (m, 4 H), 3.97 (dd, J = 26.0, 2.8 Hz, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 24.8, 29.3, 29.3, 29.4, 29.5, 29.6, 29.7, 31.5, 31.8, 34.6, 34.8, 43.4, 44.5, 50.2, 51.7, 56.4, 56.5, 78.4, 79.9, 171.9, 172.1 ppm; MS (ESI, m/z): 340 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO₂: C, 74.28; H, 12.17; N, 4.13; Found: C, 74.43; H, 12.20; N, 4.13.

(S)-1-(3-methoxypyrrolidin-1-yl)hexadecan-1-one (1m)

Following the **General Procedure B** (eluent: EtOAc/PE 1: 10), the reaction of **1k** with CH₃I afford **1m** (20 mg; yield: 95%) as colorless oil; $[\alpha]_D{}^{20}$ 45.0 (c 0.3, CHCl₃); IR (film) ν_{max} : 2956, 2924, 2851, 1642, 1464, 1431, 1374 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.25–1.33 (m, 24 H), 1.60–1.66 (m, 2 H), 1.87–2.10 (m, 2 H), 2.21–2.27 (m, 2 H), 3.33 (d, J = 8.0 Hz, 3 H), 3.42–3.69 (m, 4 H), 3.94 (dd, J = 28.0, 2.0 Hz, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 24.8, 29.3, 29.4, 29.5, 29.6, 29.7, 31.5, 31.8, 34.6, 34.8, 43.4, 44.5, 50.2, 51.7, 56.4, 56.5, 78.4, 79.9, 171.9, 172.1 ppm; MS (ESI, m/z): 340 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO₂: C, 74.28; H, 12.17; N, 4.13; Found: C, 74.38; H, 12.15; N, 4.12.

1-palmitoylpyrrolidine-3-carbonitrile (1n)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 5), the amidation of palmitoyl chloride with pyrrolidine–3–carbonitrile afford **1n** (92 mg; yield: 92%) as white solid, mp: 57.5–59.3 °C; IR (film) ν_{max} : 2914, 2849, 2250, 1637, 1430 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.4 Hz, 3 H), 1.26–1.30 (m, 24 H), 1.63–1.66 (m, 2 H), 2.18–2.38 (m, 4 H), 3.09–3.24 (m, 1 H), 3.52–3.58(m, 1 H), 3.63–3.82 (m, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.6, 24.7, 27.1, 28.6, 28.7, 29.2, 29.3, 29.4, 29.5, 29.5, 29.6, 30.4, 31.8, 34.5, 34.7, 44.3, 44.9, 48.5, 49.2, 119.3, 119.7, 171.5, 171.9 ppm; MS (ESI, m/z): 335 (M + H)⁺; Anal. calcd for C₂₁H₃₈N₂O: C, 75.39; H, 11.45; N, 8.37. Found: C, 75.44; H, 11.47; N, 8.33.

1-palmitoylpyrrolidine-3-carboxamide (10)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 5), the amidation of palmitoyl chloride with pyrrolidine-3-carboxamide afford **10** (93 mg; yield: 88%) as white solid, mp: 121.2–122.4 °C; IR (film) v_{max} : 3374, 2917, 2849, 1650, 1632, 1469, 1440 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.25–1.30 (m, 24 H), 1.57–1.60 (m, 2 H), 2.12–2.30 (m, 4 H), 2.93–3.11 (m, 1 H), 3.36–3.48 (m, 1 H), 3.55–3.80 (m, 3 H), 6.18 (br, 1 H) , 6.51 (br, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.7, 28.5, 29.2, 29.3, 29.4, 29.4, 29.5, 29.6, 31.8, 34.5, 34.6, 42.3, 44.3, 45.3, 46.1, 48.5, 48.8, 171.9, 172.0, 174.5, 174.9 ppm; MS (ESI, m/z): 353 (M + H)⁺; Anal. calcd for C₂₁H₄₀N₂O₂: C, 71.61; H, 11.46; N, 7.95; Found: C, 71.54; H, 11.44; N, 7.95.

1-palmitoylpyrrolidin-3-one (1p)

To a solution of DMP (212 mg, 0.5 mmol) in CH_2Cl_2 (5 mL), was added dropwise **1j** or **1k** (65 mg, 0.2 mmol) in CH_2Cl_2 (5 mL) under nitrogen atmosphere, the mixture was stirred at the room temperature for 3 hours, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford compound **2i** (42 mg, 64%) as white crystals, mp: 77.3–78.6 °C; IR (film) v_{max} : 2955, 2923, 2852, 1730, 1648, 1466, 1422 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26–1.30 (m, 24 H), 1.65–1.69 (m, 3 H), 2.24 (t, J = 8.0 Hz, 1 H), 2.34 (t, J = 8.0 Hz, 1 H), 2.62 (t, J = 8.0 Hz, 1 H), 2.70 (t, J = 8.0 Hz, 1 H), 3.88–3.93 (m, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.7, 24.6, 24.7, 29.3, 29.4, 29.5, 29.6, 29.6, 29.7, 31.9, 33.3, 35.0, 36.2, 37.4, 41.8, 43.3, 52.3, 53.1, 172.4, 172.6, 209.7, 209.9 ppm; MS (ESI, m/z): 324 (M + H)⁺; Anal. calcd for $C_{20}H_{37}NO_2$: C, 74.25; H, 11.53; N, 4.33; Found: C, 74.11; H, 11.50; N, 4.34.

(R)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1q)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 2), the amidation of palmitoyl chloride with (R)–pyrrolidin–2–ylmethanol afford **1q** (66 mg; yield: 65%) as white crystals, mp: 38.1–40.0 °C; $[\alpha]_D^{20}$ 25.5 (c 0.1, CDCl₃); IR (film)v_{max}: 3415, 2918, 2850, 1620, 1462, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.1 Hz, 3 H), 1.26–1.31 (m, 24 H), 1.55–1.68 (m, 3 H), 1.83–2.08 (m, 3 H), 2.30 (t, J = 7.8 Hz, 2 H), 3.43–3.67 (m, 4 H), 4.18–4.25 (m, 1 H), 5.22(s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.3, 24.7, 28.2, 29.3, 29.3, 29.4, 29.4, 29.5, 29.6, 29.6, 31.9, 35.0, 48.0, 61.0, 67.4, 174.6 ppm; MS (ESI, m/z): 340 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO₂: C, 74.28; H, 12.17; N, 4.13; Found: C, 74.31; H, 12.15; N, 4.12.

(S)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1r)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 2), the amidation of palmitoyl chloride with (S)–pyrrolidin–2–ylmethanol afford **1r** (64 mg; yield: 63%) as white crystals, mp: 45.0–45.5 °C; $[\alpha]_D^{20}$ –25.5 (c 0.1, CDCl₃); IR (film)v_{max}: 3414, 2916, 2849, 1619, 1463, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.9 Hz, 3 H), 1.26–1.31 (m, 24 H), 1.56–1.68 (m, 3 H), 1.83–2.08 (m, 3 H), 2.30 (t, J = 7.8 Hz, 2 H), 3.43–3.66 (m, 4 H), 4.18–4.24 (m, 1 H), 5.21 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 24.3, 24.7, 28.2, 29.3, 29.3, 29.4, 29.4, 29.6, 29.6, 29.6, 31.8, 35.0, 48.0, 61.0, 67.4, 76.7, 174.6 ppm; MS (ESI, m/z): 340 (M + H)⁺; Anal. calcd for C₂₁H₄₁NO₂: C, 74.28; H, 12.17; N, 4.13; Found: C, 74.33; H, 12.18; N, 4.13.

(R)-1-(2-(methoxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1s)

Following the **General Procedure A** (eluent: EtOAc/PE 1: 5), the amidation of palmitoyl chloride with (R)–pyrrolidin–2–ylmethanol afford **1s** (89 mg; yield: 84%) as colorless oil; $[\alpha]_D^{20}$ 37.1 (c 0.1, CDCl₃); IR (film)v_{max}: 2919, 2849, 1642, 1574, 1537, 1466, 1413, 1113 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26–1.30 (m, 24 H), 1.62–1.65 (m, 2 H), 1.86–2.05 (m, 4 H), 2.17–2.36 (m, 2 H), 3.21–3.47 (m, 6 H), 3.52–3.58 (m, 1 H), 4.02–4.25 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.8, 22.6, 24.1, 24.7, 25.1, 25.4, 27.4, 28.7, 29.3, 29.4, 29.4, 29.5, 29.6, 29.6, 31.8, 33.3, 34.2, 35.0, 45.4, 47.2, 56.2, 56.9, 58.9, 59.1, 72.3, 74.0, 172.1, 172.4 ppm; MS (ESI, m/z): 354 (M + H)⁺; Anal. calcd for C₂₂H₄₃NO₂: C, 74.73; H, 12.26; N, 3.96; Found: C, 74.70; H, 12.27; N, 3.97.

(S)-1-(2-(methoxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1t)

Following the General Procedure A (eluent: EtOAc/PE 1: 5), the amidation of

palmitoyl chloride with (S)–2–(methoxymethyl)pyrrolidine afford **1t** (95 mg; yield: 89%) as colorless oil; $[\alpha]_D^{20}$ –37.1 (c 0.1, CDCl₃); IR (film)v_{max}: 2919, 2850, 1650, 1458, 1415, 1114 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3 H), 1.26–1.30 (m, 24 H), 1.61–1.65 (m, 2 H), 1.86–2.03 (m, 4 H), 2.23–2.36 (m, 2 H), 3.21–3.47 (m, 6 H), 3.52–3.56 (m, 1 H), 4.02–4.26 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.9, 22.7, 24.1, 24.8, 25.5, 27.4, 28.7, 29.3, 29.4, 29.4, 29.5, 29.6, 29.7, 31.9, 34.2, 35.0, 45.5, 47.3, 56.2, 56.9, 58.9, 59.1, 72.3, 74.1, 172.1, 172.5 ppm; MS (ESI, m/z): 354 (M + H)⁺; Anal. calcd for C₂₂H₄₃NO₂: C, 74.73; H, 12.26; N, 3.96; Found: C, 74.74; H, 12.27; N, 3.95.

3-benzoyloxazolidin-2-one (2a)¹

Following the **General Procedure E** (eluent: EtOAc/PE 1: 3), the imidation of benzoic acid with oxazolidin–2–one afford **2a** (52 mg; yield: 54%) as white crystals, mp: 194.2–196.3 °C; IR (film) ν_{max} : 2917, 2894, 1774, 1677, 1380, 1338, 1201, 1108 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 4.16 (t, J = 8.0 Hz, 2 H), 4.48 (t, J = 8.0 Hz, 2 H), 7.44 (dd, J = 7.2, 7.2 Hz, 2 H), 7.55 (dd, J = 8.0, 7.2 Hz, 1 H), 7.65 (d, J = 8.0 Hz, 2 H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 43.1, 62.3, 127.88, 129.1, 132.4, 132.6, 153.2, 169.8 ppm; MS (ESI, m/z): 192 (M + H)⁺; Anal. calcd for C₁₀H₉NO₃: C, 62.82; H, 4.74; N, 7.33. Found: C, 62.60; H, 4.73; N, 7.33.

3-(2-phenylacetyl)oxazolidin-2-one (2b)²

Following the **General Procedure E** (eluent: EtOAc/PE 1: 3), the imidation of 2– phenylacetic acid with oxazolidin–2–one afford **2b** (32 mg; yield: 31%) as white crystals, mp: 67.0–67.5°C; IR (film) v_{max} : 2917, 2856, 1770, 1683, 1385, 1217, 1084 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.96 (t, J = 8.0 Hz, 2 H), 4.26 (s, 1 H), 4.31 (t, J = 8.0 Hz, 2 H), 7.24–7.33 (m, 5 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 40.9, 42.5, 61.9, 127.0, 128.4, 129.6, 133.5, 153.4, 171.1 ppm; MS (ESI, m/z): 206 (M + H)⁺; Anal. calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.42; H, 5.41; N, 6.83.

3-(3-phenylpropanoyl)oxazolidin-2-one (2c)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 3), the imidation of 3– phenylpropanoic acid with oxazolidin–2–one afford **2c** (41 mg; yield: 37%) as white crystals, mp: 114.3–116.6 °C; IR (film) v_{max} : 2917, 2856, 1766, 1692, 1390, 1317, 1227, 1043 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.99 (t, J = 7.6 Hz, 2 H), 3.25 (t, J = 7.6 Hz, 2 H), 3.99 (d, J = 8.0 Hz, 2 H), 4.37 (t, J = 8.0 Hz, 2 H), 7.18–7.30 (m, 5 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 30.1, 36.7, 42.4, 62.0, 126.2, 128.4, 128.5, 153.5, 172.5 ppm; MS (ESI, m/z): 220 (M + H)⁺; Anal. calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.81; H, 5.97; N, 6.39.

3-(4-phenylbutanoyl)oxazolidin-2-one (2d)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 4), the imidation of 4– phenylbutanoic acid with oxazolidin–2–one afford **2d** (52 mg; yield: 45%) as white crystals, mp: 72.9–74.4 °C; IR (film) v_{max} : 2919, 2850, 1779, 1737, 1702, 1496, 1478, 1386, 1240, 1041 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.95–2.04 (m, 2 H), 2.69 (t, J = 7.6 Hz, 2 H), 2.96 (t, J = 7.6 Hz, 2 H), 3.96 (t, J = 8.4 Hz, 2 H), 4.36 (t, J = 8.4 Hz, 2 H), 7.19–7.20 (m, 3 H), 7.26–7.29 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 34.5, 35.1, 42.4, 62.0, 125.9, 128.3, 128.4, 141.4, 153.5, 173.2 ppm; MS (ESI, m/z): 234 (M + H)⁺; Anal. calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.78; H, 6.48; N, 5.99.

3-(5-phenylpentanoyl)oxazolidin-2-one (2e)³

Following the **General Procedure E** (eluent: EtOAc/PE 1: 4), the imidation of 5– phenylpentanoic acid with oxazolidin–2–one afford **2e** (69 mg; yield: 56%) as white crystals, mp: 62.6–65.3 °C; IR (film) v_{max} : 2924, 2858, 1780, 1700, 1497, 1478, 1453, 1388, 1225, 1111, 1040 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.69–1.71 (m, 4 H), 2.64 (t, J = 7.2 Hz, 2 H), 2.94 (t, J = 7.2 Hz, 2 H), 3.98 (t, J = 8.4 Hz, 2 H), 4.37 (t, J = 8.4 Hz, 2 H), 7.17–7.19 (m, 3 H), 7.25–7.29 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 23.8, 30.7, 34.8, 35.5, 42.4, 61.9, 125.7, 128.2, 128.3, 142.1, 153.5, 173.3 ppm; MS (ESI, m/z): 248 (M + H)⁺; Anal. calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.20; H, 6.91; N, 5.67.

3-(6-phenylhexanoyl)oxazolidin-2-one (2f)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 4), the imidation of 6– phenylhexanoic acid with oxazolidin–2–one afford **2f** (41 mg; yield: 31%) as white crystals, mp: 65.3–66.9 °C; IR (film) v_{max} : 2920, 2858, 1780, 1700, 1388, 1225, 1111, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.36–1.44 (m, 2 H), 1.61–1.73 (m, 4 H), 2.61 (t, J = 7.6 Hz, 2 H), 2.90 (t, J = 7.6 Hz, 2 H), 3.97 (t, J = 8.4 Hz, 2 H), 4.36 (t, J = 8.4 Hz, 2 H), 7.16–7.18 (m, 3 H), 7.24–7.28 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 24.0, 28.6, 31.1, 34.9, 35.6, 42.4, 61.9, 125.5, 128.2, 128.3, 142.4, 153.4, 173.3 ppm; MS (ESI, m/z): 262 (M + H)⁺; HRMS (ESI) calcd for [C₁₅H₂₀NO₃]⁺ (M + H)⁺: 262.1443; found: 262.1438; Anal. calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.70; H, 7.31; N, 5.38.

3-(7-phenylheptanoyl)oxazolidin-2-one (2g)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 7– phenylheptanoic acid with oxazolidin–2–one afford **2g** (61 mg; yield: 44%) as white wax; IR (film) v_{max} : 2918, 2850, 1781, 1703, 1386, 1225, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.35–1.42 (m, 4 H), 1.58–1.69 (m, 4 H), 2.60 (t, J = 7.6 Hz, 2 H), 2.90 (t, J = 7.6 Hz, 2 H), 3.98 (t, J = 8.4 Hz, 2 H), 4.36 (t, J = 8.4 Hz, 2 H), 7.16–7.17 (m, 3 H), 7.24–7.28 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 24.1, 28.9, 28.9, 31.2, 35.0, 35.8, 42.4, 61.9, 125.5, 128.1, 128.3, 142.6, 153.5, 173.4 ppm; MS (ESI, m/z): 276 (M + H)⁺; Anal. calcd for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.83; H, 7.68; N, 5.10.

3-(8-phenyloctanoyl)oxazolidin-2-one (2h)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 8– phenyloctanoic acid with oxazolidin–2–one afford **2h** (64 mg; yield: 44%) as white crystals, mp: 71.5–72.3 °C; IR (film) v_{max} : 2920, 2848, 1780, 1703, 1386, 1225, 1020 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.35–1.42 (m, 4 H), 1.58–1.69 (m, 4 H), 2.60 (t, J = 7.6 Hz, 2 H), 2.90 (t, J = 7.6 Hz, 2 H), 3.98 (t, J = 8.4 Hz, 2 H), 4.36 (t, J = 8.4 Hz, 2 H), 7.16–7.17 (m, 3 H), 7.24–7.28 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 24.1, 28.9, 28.9, 31.2, 35.0, 35.8, 42.4, 61.9, 125.5, 128.1, 128.3, 142.6, 153.5, 173.4 ppm; MS (ESI, m/z): 290 (M + H)⁺; Anal. calcd for C₁₇H₂₃NO₃: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.61; H, 7.99; N, 4.85.

Biphenyl-4-yl-carbonyl oxazolidin-2-one (3a)¹

Following the **General Procedure E** (eluent: EtOAc/PE 1: 2), the imidation of 4– phenylbenzoic acid with oxazolidin–2–one afford **3a** (71 mg; yield: 53%) as white crystals, mp: 251.6–253.7 °C; IR (film)v_{max}: 2917, 2849, 1761, 1676, 1579, 1384, 1332, 1204, 1099, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.20 (t, J = 8.0 Hz, 2 H), 4.52 (t, J = 8.0 Hz, 2 H), 7.39 (t, J = 7.6 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 2 H), 7.61–7.66 (m, 4 H), 7.76 (d, J = 8.0 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.8, 62.3, 126.6, 127.3, 128.1, 128.9, 129.8, 131.1, 140.0, 145.3, 153.3, 169.5 ppm; MS (ESI, m/z): 268 (M + H)⁺; Anal. calcd for C₁₆H₁₃NO₃: C, 71.90; H, 4.90; N, 5.24. Found: C, 72.10; H, 4.91; N, 5.23.

3-(4-phenoxybenzoyl)oxazolidin-2-one (3b)¹

Following the **General Procedure E** (eluent: EtOAc/PE 1: 2), the imidation of 4– phenoxybenzoic acid with oxazolidin–2–one afford **3b** (77 mg; yield: 55%) as white crystals, mp: 149.0–151.5 °C; IR (film)v_{max}: 2915, 2844, 1779, 1681, 1575, 1482, 1445, 1382, 1322 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.17 (t, J = 8.0 Hz, 2 H), 4.50 (t, J = 8.0 Hz, 2 H), 6.97 (ddd, J = 8.4, 2.8, 2.0 Hz, 2 H), 7.08 (dd, J = 8.4, 0.8 Hz, 2 H), 7.19 (dd, J = 7.6 Hz, 1 H), 7.40 (ddd, J = 8.4, 7.6, 2.0 Hz 2 H), 7.67 (ddd, J = 8.4, 2.8, 2.0 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.9, 62.2, 116.7, 120.3, 124.6, 126.4, 130.0, 131.7, 153.4, 155.5, 161.7, 168.9 ppm; MS (ESI, m/z): 284 (M + H)⁺; Anal. calcd for C₁₆H₁₃NO₄: C, 67.84; H, 4.63; N, 4.94. Found: C, 67.75; H, 4.63; N, 4.95.

3-(4-(benzyloxy)benzoyl)oxazolidin-2-one (3c)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 4– (benzyloxy)benzoic acid with oxazolidin–2–one afford **3c** (108 mg; yield: 73%) as white crystals, mp: 198.0–201.3 °C; IR (film) v_{max} : 2916, 2849, 1774, 1670, 1607, 1512, 1378, 1338, 1249, 1194, 1108, 1024 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (t, J = 8.0 Hz, 2 H), 4.47 (t, J = 8.0 Hz, 2 H), 5.11 (s, 2 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.34–7.43 (m, 5 H), 7.69 (d, J = 8.8 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.9, 62.2, 70.1, 114.0, 124.7, 127.5, 128.2, 128.6, 131.8, 136.2, 153.5, 162.4, 169.0 ppm; MS (ESI, m/z): 298 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.90; H, 5.11; N, 4.69.

4-phenethoxybenzoic acid (3d-1)

Following the **General Procedure F** (eluent: EtOAc/PE 1: 5), the reaction starting from 4–hydroxybenzoic acid afford **3d–1** (315 mg; yield: 65%) as white wax; IR (film) v_{max} : 3415, 2949, 2917, 2848, 1677, 1608, 1254 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.13 (d, J = 7.0 Hz, 2 H), 4.24 (d, J = 7.0 Hz, 2 H), 6.93 (d, J = 8.8 Hz, 2 H), 7.23–7.35 (m, 5 H), 7.33–7.40 (m, 4 H), 8.04 (dd, J = 7.1 Hz, 1.8 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 35.6, 68.9, 114.2, 121.7, 126.7, 128.6, 128.9, 132.3, 137.8, 163.3, 171.5 ppm; MS (ESI, m/z): 243 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 74.36; H, 5.82. Found: C, 74.21; H, 5.82.

3-(4-phenethoxybenzoyl)oxazolidin-2-one (3d)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of **3d-1** with oxazolidin–2–one afford **3d** (84 mg; yield: 54%) as white crystals, mp: 127.3–129.7 °C; IR (film) v_{max} : 2916, 2849, 1777, 1672, 1605, 1508, 1384, 1324, 1307, 1254, 1168, 1094, 1029 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.11 (t, J = 7.2 Hz, 2 H), 4.14 (t, J = 8.0 Hz, 2 H), 4.22 (t, J = 7.2 Hz, 2 H), 4.46 (t, J = 8.0 Hz, 2 H), 6.90 (d, J = 8.4 Hz, 2 H), 7.23–7.34 (m, 5 H), 7.67 (d, J = 8.4 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 35.6, 43.9, 62.2, 68.8, 113.7, 124.4, 126.6, 128.5, 129.0, 131.8, 137.8, 153.5, 162.5, 169.0 ppm; MS (ESI, m/z): 312 (M + H)⁺; Anal. calcd for C₁₈H₁₇NO₄: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.53; H, 5.51; N, 4.49

3-(4-benzylidenepiperidine-1-carbonyl)oxazolidin-2-one (3e)

Following the **General Procedure G** (eluent: EtOAc/PE 1: 4), the reaction starting from 4–benzylidenepiperidine afford **3e** (18 mg; yield: 16%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.47 (t, J = 5.7 Hz, 2 H), 2.60 (t, J = 5.7 Hz, 2 H), 3.50–3.58 (m, 2 H), 3.62–3.67 (m, 2 H), 3.99 (t, J = 7.8 Hz, 2 H), 4.42 (t, J = 7.8 Hz, 2 H), 6.4 (s, 1 H), 7.18–7.24 (m, 3 H), 7.33 (dd, J = 7.4, 7.4 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 31.2, 36.7, 42.4, 44.3, 44.4, 62.4, 123.3, 126.0, 128.1, 128.9, 129.9, 140.6, 152.5, 154.1 ppm; MS (ESI, m/z): 287 (M + H)⁺; HRMS (ESI) calcd for [C₁₆H₁₉N₂O₃]⁺ (M + H)⁺: 287.1396; found: 287.1389.

3-(4-benzylpiperidine-1-carbonyl)oxazolidin-2-one (3f)

Following the **General Procedure G** (eluent: EtOAc/PE 1: 4), the reaction starting from 4–benzylpiperidine afford **3f** (15 mg; yield: 13%) as corless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.23–1.37 (m, 2 H), 1.67–1.79 (m, 3 H), 2.55 (d, J = 7.1 Hz, 2 H), 2.88 (br, 2 H), 3.93 (t, J = 7.8 Hz, 2 H), 4.37 (t, J = 7.8 Hz, 2 H), 6.8 (d, J = 6.8 Hz, 2 H), 7.19 (dd, J = 7.2, 7.2 Hz, 1 H), 7.25–7.29 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 31.7, 37.8, 42.7, 44.3, 62.6, 125.9, 128.1, 128.9, 139.8, 152.4, 154.2 ppm; MS (ESI, m/z): 289 (M + H)⁺; HRMS (ESI) calcd for [C₁₆H₂₁N₂O₃]⁺ (M + H)⁺: 289.1552; found: 289.1541.

3-(1-benzylpiperazine-4-carbonyl)oxazolidin-2-one (3g)

Following the **General Procedure G** (eluent: EtOAc/PE 1: 1), the reaction starting from 1–benzylpiperazine afford **3g** (14 mg; yield: 12%) as corless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.51 (d, J = 5.1 Hz, 4 H), 3.52–3.57 (m, 6 H), 3.94 (t, J = 7.8 Hz, 2 H), 4.38 (t, J = 7.8 Hz, 2 H), 7.24–7.34 (m, 5 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.6, 44.3, 52.5, 62.6, 62.7, 127.2, 128.2, 129.0, 137.3, 152.4, 154.1 ppm; MS (ESI, m/z): 290 (M + H)⁺; HRMS (ESI) calcd for [C₁₅H₂₀N₃O₃]⁺ (M + H)⁺: 290.1505; found: 290.1517.

4-benzylidenecyclohexanecarboxylic acid (3h-1)⁵

To a solution of Benzyltriphenylphosphonium chloride (389 mg, 1.0 mmol) in THF (15 mL) was added slowly a solution of 2 M LiHMDS (2.5 mmol, 1.25 mL THF) under nitrogen atmosphere at -78°C. The reaction mixture was stirred at -78°C for 15 min, and allowed to warm slowly to 0°C in 0.5 hour. After being stirred at 0°C for 1 hour, a solution of 4-Oxocyclohexanecarboxylic acid (150 mg, 1.05 mmol) in THF (2 mL) was slowly added at -78° C. The reaction mixture was allowed to warm slowly to 0°C and stirred at the same temperature for 18 hour. The reaction was guenched with 15 mL aqueous 4 M HCl and extracted with EtOAc (3 \times 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford **3h-1** (60 mg; yield: 28%) as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.54–1.76 (m, 2 H), 1.99–2.12 (m, 3 H), 2.21–2.27 (m, 1 H), 2.42-2.45 (m, 1 H), 2.54-2.59 (m, 1 H), 2.84-2.87 (m, 1 H), 6.29 (s, 1 H), 7.17-7.23 (m, 3 H), 7.30 (dd, J = 7.6, 7.6 Hz, 2 H) ppm; 13 C NMR (100 MHz, CDCl₃) δ 27.6, 29.3, 30.0, 25.6, 42.6, 123.4, 126.0, 128.0, 128.8, 137.8, 140.4, 181.9 ppm; MS (ESI, m/z): 217 (M + H)⁺; Anal. calcd for $C_{14}H_{16}O_2$: C, 77.75; H, 7.46. Found: C, 77.88; H, 7.47.

3-(4-benzylidenecyclohexanecarbonyl)oxazolidin-2-one (3h)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of **3h–1** afford **3h** (78 mg; yield: 55%) as colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.50–1.72 (m, 3 H), 1.93–1.99 (m, 1 H), 2.01–2.08 (m, 2 H), 2.30–2.38 (m, 1 H), 2.43–2.47 (m, 1 H), 2.93–2.97 (m, 1 H), 3.70–3.78 (m, 1 H), 4.00 (t, J = 7.8 Hz, 2 H), 4.40 (t, J = 7.8 Hz, 2 H), 6.32 (s, 1 H), 7.71–7.21 (m, 3 H), 7.29–7.32 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 29.6, 30.3, 35.7, 41.7, 42.7, 61.9, 123.3, 126.0, 128.0, 128.9, 137.9, 140.6, 153.1, 175.9 ppm; MS (ESI, m/z): 286 (M + H)⁺; Anal. calcd for C₁₇H₁₉NO₃: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.37; H, 6.72; N, 4.91.

3-(4-benzylcyclohexanecarbonyl)oxazolidin-2-one (3i)

Compound **3h** (28 mg, 0.1 mmol) in EtOAc (10 mL) was treated with 10% Pd/C (200 mg) and purged with H₂. After stirring for 12 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure to afford the product as white wax (28 mg; yield: 98%); ¹H NMR (400 MHz, CDCl₃) δ 1.53–1.68 (m, 6 H), 1.77–1.90 (m, 3 H), 2.62 (t, J = 7.6 Hz, 2 H), 3.60-3.66 (m, 1 H), 4.01 (t, J = 8.0 Hz, 2 H), 4.38 (t, J = 8.0 Hz, 2 H), 6.32 (s, 1 H), 7.12–7.19 (m, 3 H), 7.25–7.29 (m, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 25.2, 28.6, 36.4, 39.8, 40.1, 42.8, 61.8, 125.7, 128.1, 129.0, 141.3, 153.1, 176.6 ppm; MS (ESI, m/z): 288 (M + H)⁺; Anal. calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.37; N, 4.87. Found: C, 71.19; H, 7.38; N, 4.86.

6-cyclohexylhexanoic acid (3j-1)⁴

To a solution of (4–Carboxybutyl)triphenylphosphonium bromide (443 mg, 1.0 mmol) in THF (15 mL) was added slowly a solution of 2 M LiHMDS (2.5 mmol, 1.25 mL THF) under nitrogen atmosphere at -78°C. The reaction mixture was stirred at -78°C for 15 min, and allowed to warm slowly to 0°C in 0.5 hour. After being stirred at 0°C for 1 hour, a solution of cyclohexanecarbaldehyde (112 mg, 1.05 mmol) in THF (2 mL) was slowly added at -78° C. The reaction mixture was allowed to warm slowly to 0°C and stirred at the same temperature for 18 hour. The reaction was guenched with 15 mL aqueous 4 M HCl and extracted with EtOAc (3 \times 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue in EtOAc (10 mL) was treated with 10% Pd/C (200 mg) and purged with H₂. After stirring for 12 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure to afford the product 3j-1 (139 mg; yield: 70%) as colorless oil, IR (film) v_{max} : 3404, 2918, 2850, 1709, 1445, 1025 cm^{-1,1}H NMR (400 MHz, CDCl₃) δ 0.84–0.92 (m, 2 H), 1.14-1.34 (m, 10 H), 1.64-1.72 (m, 7 H), 2.36 (t, J = 7.5 Hz, 2 H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 24.7, 26.4, 26.4, 26.7, 29.4, 33.4, 34.1, 37.2, 37.6, 180.1 ppm; MS (ESI, m/z): 199 (M + H)⁺; Anal. calcd for $C_{12}H_{22}O_2$: C, 72.68; H, 11.18. Found: C, 72.55; H, 11.17.

3-(6-cyclohexylhexanoyl)oxazolidin-2-one (3j)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of **3j-1** with oxazolidin–2–one afford **3j** (57 mg; yield: 43%) as white crystals, mp: 65.0–66.6 °C; IR (film) ν_{max} : 2917, 2849, 1577, 1541, 1468, 1384, 1068, 1023 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 0.82–0.90 (m, 2 H), 1.15–1.23 (m, 6 H), 1.32–1.34 (m, 4 H), 1.63–1.70 (m, 7 H), 2.92 (t, J = 7.6 Hz, 2 H), 4.03 (t, J = 8.0 Hz, 2 H), 4.42 (t, J = 8.0 Hz, 2 H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 24.3, 26.4, 26.5, 26.7, 29.4, 33.4, 35.0, 37.3, 37.6, 42.5, 61.9, 153.5, 173.6 ppm; MS (ESI, m/z): 268 (M + H)⁺; Anal. calcd for C₁₅H₂₅NO₃: C, 67.38; H, 9.42; N, 5.24. Found: C, 67.15; H, 9.41; N, 5.25.

Biphenyl-3-yl-carbonyl oxazolidin-2-one (3k)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 2), the imidation of 3– phenylbenzoic acid with oxazolidin–2–one afford **3k** (81 mg; yield: 61%) as white crystals, mp: 205.6–208.8 °C; IR (film) v_{max} : 2916, 2848, 1633, 1565, 1406, 1107, 1037 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.19–4.20 (m, 2 H), 4.52 (br, 2 H), 7.36– 7.38 (m, 1 H), 7.44 (br, 2 H), 7.50–7.52 (m, 1 H), 7.59–7.61 (m, 3 H), 7.77–7.78 (br, 1 H), 7.87 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.7, 48.0, 48.2, 48.4, 48.6, 48.9, 62.6, 127.0, 127.6, 128.3, 128.7, 130.8, 140.0, 140.9, 153.9, 170.0 ppm; MS (ESI, m/z): 268 (M + H)⁺; Anal. calcd for C₁₆H₁₃NO₃: C, 71.90; H, 4.90; N, 5.24. Found: C, 71.74; H, 4.89; N, 5.25.

Biphenyl-3-yl-methylcarbonyl oxazolidin-2-one (3l)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 3), the imidation of 3– phenylphenylacetic acid with oxazolidin–2–one afford **31** (63 mg; yield: 45%) as white wax; IR (film) v_{max} : 2916, 2848, 1776, 1697, 1598, 1478, 1387, 1366, 1223, 1180, 1109 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.02 (t, J = 8.0 Hz, 2 H), 4.35 (s, 2 H), 4.39 (t, J = 8.0 Hz, 2 H), 7.31 (d, J = 7.2 Hz, 1 H), 7.34 (d, J = 7.2 Hz, 1 H), 7.38– 7.44 (m, 3 H), 7.50 (d, J = 7.6 Hz, 1 H), 7.55–7.60 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 41.1, 42.7, 61.9, 126.0, 127.2, 127.3, 128.6, 128.6, 128.7, 128.9, 134.0, 140.8, 141.5, 153.5, 171.2 ppm; MS (ESI, m/z): 282 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₃: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.71; H, 5.39; N, 4.96.

Biphenyl-4-yl-methylcarbonyl oxazolidin-2-one (3m)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 3), the imidation of 4– phenylphenylacetic acid with oxazolidin–2–one afford **3m** (65 mg; yield: 46%) as white crystals, mp: 197.6–200 °C; IR (film) v_{max} : 2914, 2844, 1776, 1697, 1578, 1386, 1366, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.00 (t, J = 8.4 Hz, 2 H), 4.31 (s, 2 H), 4.36 (t, J = 8.4 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 1 H), 7.37–7.44 (m, 4 H), 7.54–7.58 (m, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 40.7, 42.6, 61.9, 126.9, 127.0, 127.2, 128.7, 130.1, 132.5, 140.0, 140.7, 153.4, 171.1 ppm; MS (ESI, m/z): 282 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₃: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.67; H, 5.38; N, 4.97.

3-(3-phenoxybenzoyl)oxazolidin-2-one (3n)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 2), the imidation of 3– phenoxybenzoic acid with oxazolidin–2–one afford **3n** (68 mg; yield: 48%) as white crystals, mp: 140.3–141.4 °C; IR (film) v_{max} : 2917, 2845, 1783, 1682, 1577, 1483, 1436, 1322, 1200 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (t, J = 8.0 Hz, 2 H), 4.46 (t, J = 8.0 Hz, 2 H), 7.04 (dd, J = 8.6, 1.0 Hz, 2 H), 7.12 (dd, J = 7.4, 0.9 Hz, 1 H), 7.18 (dddd, J = 7.2, 7.2, 2.0, 2.0 Hz, 1 H), 7.26 (br, 1 H), 7.33–7.39 (m, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.6, 62.2, 119.1, 119.1, 122.6, 123.6, 123.7, 129.4, 129.9, 134.3, 153.0, 156.6, 156.8, 169.1 ppm; MS (ESI, m/z): 284 (M + H)⁺; Anal. calcd for C₁₆H₁₃NO₄: C, 67.84; H, 4.63; N, 4.94. Found: C, 68.01; H, 4.64; N, 4.93.

3-(2-(3-phenoxyphenyl)acetyl)oxazolidin-2-one (30)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 2–(3– phenoxyphenyl)acetic acid with oxazolidin–2–one afford **30** (78 mg; yield: 53%) as white wax; IR (film) v_{max} : 2914, 2844, 1777, 1701, 1583, 1486, 1387, 1366, 1269, 1246, 1211 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.99 (t, J = 8.0 Hz, 2 H), 4.24 (s, 1

H), 4.37 (t, J = 8.0 Hz, 2 H), 6.89 (d, J = 7.8 Hz, 1 H), 6.96 (s, 1 H), 7.01 (dd, J = 8.4, 8.4 Hz, 3 H), 7.09 (dd, J = 7.8 Hz, 1 H), 7.25 (d, J = 7.8 Hz, 1 H), 7.31 (dd, J = 8.4, 8.4 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 40.9, 42.6, 61.9, 117.4, 118.9, 120.1, 123.2, 124.5, 129.6, 129.7, 135.3, 153.4, 156.9, 157.2, 170.8 ppm; MS (ESI, m/z): 298 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.51; H, 5.08; N, 4.72.

3-(2-(4-phenoxyphenyl)acetyl)oxazolidin-2-one (3p)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 2–(4– phenoxyphenyl)acetic acid with oxazolidin–2–one afford **3p** (88 mg; yield: 59%) as white crystals, mp: 122.3–124.9 °C; IR (film) v_{max} : 2916, 2848, 1777, 1577, 1537, 1486, 1467, 1385, 1237, 1108, 1040 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.02 (t, J = 8.0 Hz, 2 H), 4.25 (s, 2 H), 4.39 (t, J = 8.0 Hz, 2 H), 6.95-7.00 (m, 4 H), 7.09 (t, J = 7.6 Hz, 1 H), 7.27-7.32 (m, 4 H)ppm; ¹³C NMR (100 MHz, CDCl₃) δ 40.3, 42.6, 62.0, 118.8, 118.9, 123.3, 128.2, 129.7, 131.0, 153.4, 156.4, 157.0, 171.3 ppm; MS (ESI, m/z): 298 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.73; H, 5.10; N, 4.72.

3–(benzyloxy)benzoic acid (3q–1)

Following the **General Procedure F** (eluent: EtOAc/PE 1: 5), the reaction starting from 3–hydroxybenzoic acid afford **3q–1** (342 mg; yield: 75%) as white crystals, mp: 131.2–133.5 °C; IR (film) ν_{max} : 3087, 2917, 2849, 1681, 1603, 1587, 1452 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.11 (s, 2 H), 7.21–7.24 (m, 1 H), 7.33–7.36 (m, 1 H), 7.38–7.41 (m, 3 H), 7.44 (d, J = 7.2 Hz, 2 H), 7.73 (d, J = 7.2 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 70.2, 115.5, 121.2, 122.9, 127.5, 128.1, 128.6, 129.6, 130.6, 136.4, 158.8, 172.1 ppm; MS (ESI, m/z): 229 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 73.67; H, 5.30. Found: C, 73.90; H, 5.29.

3-(3-(benzyloxy)benzoyl)oxazolidin-2-one (3q)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 3– (benzyloxy)benzoic acid with oxazolidin–2–one afford **3q** (82 mg; yield: 55%) as white crystals, mp: 142.1–143.3 °C; IR (film) v_{max} : 2916, 2849, 1785, 1679, 1634, 1579, 1436, 1383, 1325, 1244, 1217, 1196, 1145, 1098, 1037 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 4.16 (t, J = 7.6 Hz, 2 H), 4.48 (t, J = 7.6 Hz, 2 H), 5.08 (s, 2 H), 7.14–7.44 (m, 9 H)ppm; ¹³C NMR (100 MHz, CDCl₃) δ 43.7, 62.2, 70.3, 115.1, 119.3, 121.7, 127.6, 128.1, 128.6, 129.0, 133.9, 136.5, 153.1, 158.3, 169.5 ppm; MS (ESI, m/z): 298 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.81; H, 5.11; N, 4.71.

3-(2-(3-(benzyloxy)phenyl) acetyl)oxazolidin-2-one (3r)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 2–(3– (benzyloxy)phenyl)acetic acid with oxazolidin–2–one afford **3r** (76 mg; yield: 49%) as white wax; IR (film)v_{max}: 2916, 2849, 1777, 1698, 1583, 1489, 1449, 1387, 1365, 1272, 1224, 1158, 1109, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.97 (t, J = 8.1 Hz, 2 H), 4.25 (s, 2 H), 4.35 (t, J = 8.1 Hz, 2 H), 5.04 (s, 2 H), 6.88 (d, J = 7.9 Hz, 1 H), 6.91 (d, J = 7.9 Hz, 1 H), 6.96 (s, 1H), 7.22 (dd, J = 7.9, 7.9 Hz, 1 H), 7.30 (dd, J = 7.2, 7.2 Hz, 1 H), 7.37 (dd, J = 7.2, 7.2 Hz, 2 H), 7.42 (d, J = 7.2 Hz, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 41.0, 42.6, 61.9, 69.9, 113.7, 116.2, 122.3, 127.5, 127.9, 128.5, 129.5, 135.0, 137.0, 153.4, 158.9, 171.0 ppm; MS (ESI, m/z): 312 (M + H)⁺; Anal. calcd for C₁₈H₁₇NO₄: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.20; H, 5.49; N, 4.51.

2-(4-(benzyloxy)phenyl) acetic acid (3s-1)

Following the **General Procedure F** (eluent: EtOAc/PE 1: 5), the reaction starting from 2–(4–hydroxyphenyl)acetic acid afford **3s–1** (300 mg; yield: 62%) as white crystals, mp: 123.6–124.2°C; IR (film) v_{max} : 3087, 2917, 2849, 1688, 1513, 1452, 1249, 1014 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.54 (s, 2 H), 5.00 (s, 2 H), 6.91 (d, J = 8.4 Hz, 2 H), 7.14 (d, J = 8.4 Hz, 2 H), 7.27–7.31 (m, 1 H), 7.33–7.40 (m, 4 H), 10.99 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 40.1, 69.9, 114.9, 125.5, 127.4, 127.9, 128.5, 130.4, 136.9, 158.0, 178.4 ppm; MS (ESI, m/z): 243 (M + H)⁺; Anal. calcd for C₁₇H₁₅NO₄: C, 74.36; H, 5.82. Found: C, 74.62; H, 5.81.

3-(2-(4-(benzyloxy)phenyl)acetyl)oxazolidin-2-one (3s)

Following the **General Procedure E** (eluent: EtOAc/PE 1: 5), the imidation of 2–(4– (benzyloxy)phenyl)acetic acid with oxazolidin–2–one afford **3s** (77 mg; yield: 50%) as white crystals, mp: 108.4–110.5 °C; IR (film) v_{max} : 2916, 2849, 1777, 1698, 1607, 1511, 1387, 1365, 1240, 1177, 1111, 1040, 1016 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 3.96 (t, J = 8.0 Hz, 2 H), 4.20 (s, 2 H), 4.33 (t, J = 8.0 Hz, 2 H), 5.03 (s, 2 H), 6.92 (d, J = 8.4 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 7.30 (t, J = 7.2 Hz, 1 H), 7.35–7.42 (m, 4 H)ppm;¹³C NMR (100 MHz, CDCl₃) δ 40.1, 42.6, 61.9, 69.9, 114.8, 125.8, 127.4, 127.9, 128.5, 130.7, 136.9, 153.4, 157.9, 171.5 ppm; MS (ESI, m/z): 312 (M + H)+; Anal. calcd for C₁₈H₁₇NO₄: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.65; H, 5.51; N, 4.50.

Supplementary Tables

 Table S1. Inhibitory activities of compounds 1k–1u towards NAAA and FAAH^[a]

_{R3}
` <u>N</u> ∕R₂
0

Compound	R ₂	R ₃	IC ₅₀ of NAAA (µM)	IC₅₀ of FAAH (µM)
1j	-H	(R)-OH	> 100	> 100
1k	-H	(S)-OH	> 100	> 100
11	-H	(R)-OMe	> 100	> 100
1m	-H	(S)-OMe	> 100	> 100
1n	-H	(R)/(S)-CN	> 100	> 100
10	-H	(R)/(S)-CONH ₂	> 100	> 100
1р	-H	= O	> 100	> 100
1q	(R)-CH ₂ OH	-H	> 100	> 100
1r	(S)-CH₂OH	-H	> 100	> 100
1s	(R)-CH ₂ OMe	-H	> 100	> 100
1t	(S)-CH ₂ OMe	-H	> 100	> 100

^[a]Data are presented as $IC_{50} \pm$ standard error of the mean. All experiments were performed in triplicate.

Table S2. Inhibitory activities of compounds $3K-3s$ towards NAAA and
--

Compound	n	R	IC₅₀ of NAAA (µM)	IC₅₀ of FAAH (µM)
3k	0	3-Ph	>20	>20
31	1	3-Ph	>20	>20
3m	1	4-Ph	>20	>20
3n	0	3-OPh	>20	>20
30	1	3-OPh	>20	>20
3р	1	4-OPh	>20	>20
3q	0	3-OBn	>20	>20
3r	1	3-OBn	>20	>20
3s	1	4-OBn	>20	>20

^[a]Data are presented as $IC_{50} \pm$ standard error of the mean. All experiments were performed in triplicate.

Compounds	HPLC purity	Compounds	HPLC purity
10	98.3%	3a	98.5%
1d	98.7%	3b	98.8%
1e	99.1%	3c	99.0%
1f	98.6%	3d	97.8%
1g	99.5%	3e	99.4%
1h	99.4%	3f	98.2%
1i	99.1%	3g	98.6%
2a	98.6%	3h	98.5%
2b	99.0%	3i	98.8%
2c	97.9%	3ј	99.3%
2d	99.2%		
2e	98.8%		
2f	99.3%		
2g	99.5%		
2h	99.4%		

Table S3. Purity of the new synthesized compounds

Purity of each compound was determined on an Agilent 1200-HPLC system. Column: Hypersil Gold C18 column, 250×4.6 mm, 5 µm; flow rate: 0.75 mL/min, detection: UV at 220 and 254 nm; mobile phase: 10–98% acetonitrile/water and a 50–98% acetonitrile/water.

Supplementary Figures

Figure S1. Characterization of 2f as a reversible and noncompetitive NAAA inhibitor. (A) Concentration-dependent inhibitory effects of **2f** on the human NAAA (closed circles); (B) Concentration-dependent inhibitory effects of **2f** on the recombinant rat NAAA-transfected HEK293 cells (open triangles).

Figure S2. Effects of NAAA inhibitor on body weight and food intake. C57 mice were treated a single introgastric administration of vehicle (5% Tween 80 and 5% PEG 400 in saline, circle) or 2f at 30 mg/kg/day (square), 100 mg/kg/day (triangle) for 30 and 10 days, respectively. Mice were housed in metabolic cages and monitored for body weight (A) and food intake (B). Body weight was expressed by Mean \pm SEM, and total food intake per day were recored.

Figure S3. Assessment of gastric mucosa injury caused by NAAA and COX inhibitors. The dual COX1/2 inhibitor indomethacin (20 mg/kg for 3 days) produced significant gastric distension (B), ulcer and hemorrhages (G), while the NAAA inhibitor **2f** (30 mg/kg for 30 days and 100 mg/kg for 10 days) did not induce the similar gastric toxicity (C, D, F). All compounds were administered introgastrically in saline containing 5% Tween 80 and 5% PEG 400.

Vehicle

2f (30 mg/kg), 30 day

Indomethacin (20 mg/kg), 3 day

Figure S4. The inhibition of hERG channels in CHO cells by 2f (A) and cisapride (B).

(R)-1-(3-aminopyrrolidin-1-yl)hexadecan-1-one (1c)

(S)-1-(3-aminopyrrolidin-1-yl)hexadecan-1-one (1d)

(R)-1-(2-methylpyrrolidin-1-yl)hexadecan-1-one (1e)

1-palmitoylpyrrolidin-2-one (1g)

1-palmitoylimidazolidin-2-one (1h)

3-palmitoyloxazolidin-2-one (1i)

(R)-1-(3-hydroxypyrrolidin-1-yl)hexadecan-1-one (1j)

(S)-1-(3-hydroxypyrrolidin-1-yl)hexadecan-1-one (1k)

1-palmitoylpyrrolidine-3-carbonitrile (1n)

1-palmitoylpyrrolidine-3-carboxamide (10)

1-palmitoylpyrrolidin-3-one (1p)

(R)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1q)

(S)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1r)

(R)-1-(2-(methoxymethyl)pyrrolidin-1-yl)hexadecan-1-one (1s)

3-benzoyloxazolidin-2-one (2a)

3-(2-phenylacetyl)oxazolidin-2-one (2b)

3-(4-phenylbutanoyl)oxazolidin-2-one (2d)

3-(6-phenylhexanoyl)oxazolidin-2-one (2f)

3-(7-phenylheptanoyl)oxazolidin-2-one (2g)

3-(4-(benzyloxy)benzoyl)oxazolidin-2-one (3c)

4-phenethoxybenzoic acid (3d-1)

6-cyclohexylhexanoic acid (3j-1)

3-(6-cyclohexylhexanoyl)oxazolidin-2-one (3j)

4-benzylidenecyclohexanecarboxylic acid (3h-1)

S58

3-(4-benzylcyclohexanecarbonyl)oxazolidin-2-one (3i)

Biphenyl-3-yl-carbonyl oxazolidin-2-one (3k)

3-(3-phenoxybenzoyl)oxazolidin-2-one (3n)

3-(benzyloxy)benzoic acid (3q-1)

3-(2-(3-(benzyloxy)phenyl)acetyl)oxazolidin-2-one (3r)

References

(1) Li, B. J.; Wang, H. Y.; Zhu, Q. L.; Shi, Z. J., Rhodium/copper-catalyzed annulation of benzimides with internal alkynes: indenone synthesis through sequential C-H and C-N cleavage. Angewandte Chemie **2012**, 51 (16), 3948.

(2) Evans, D. A.; Nelson, S. G., Chiral Magnesium Bis(sulfonamide) Complexes as Catalysts for the Merged Enolization and Enantioselective Amination of N-Acyloxazolidinones. A Catalytic Approach to the Synthesis of Arylglycines. Journal of the American Chemical Society **1997**, 119 (27), 6452.

(3) Wang, J.; Uttamchandani, M.; Li, J.; Hu, M.; Yao, S. Q., Rapid assembly of matrix metalloprotease inhibitors using click chemistry. Organic letters **2006**, 8 (17), 3821.

(4) Iwasaki, T.; Higashikawa, K.; Reddy, V. P.; Ho, W. W.; Fujimoto, Y.; Fukase, K.; Terao, J.; Kuniyasu, H.; Kambe, N., Nickel-butadiene catalytic system for the cross-coupling of bromoalkanoic acids with alkyl Grignard reagents: a practical and versatile method for preparing fatty acids. Chemistry **2013**, 19 (9), 2956.

(5) Lemieux, R. P.; Schuster, G. B., Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials. The Journal of Organic Chemistry **1993**, 58 (1), 100.