Supplementary information

Microwave-assisted hydrolysis of biomass over activated carbon supported polyoxometalate

Shuntaro Tsubaki ^a, Kiriyo Oono ^b, Ayumu Onda ^b, Tadaharu Ueda ^c, Tomohiko Mitani ^d, Masanori Hiraoka ^e

^{a.} Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo, 152-8550, Japan.

^{b.} Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Akebonocho 2-5-1, Kochi City, Kochi 780-8520, Japan.

^{c.} Department of Marine Resource Science, Marine Resources and Environmental Course, Kochi University, Akebono-cho 2-5-1, Kochi, Japan.

^d Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan.

^{e.} Usa Marine Biological Institute, Kochi University, Inoshiri, Usa, Tosa, Kochi 781-1164, Japan.

POM – pretreatment	SiW leaching
(type of AC)	rate (%)
SiW – None (type D)	7.8
SiW – HCl (type D)	8.3
SiW – LiCl (type D)	4.6
SiW – NaCl (type D)	5.6
SiW – KCl (type D)	7.1
SiW – CsCl (type D)	6.6
SiW – TBAB (type D)	5.3
SiW – NH ₄ Cl (type D)	8.4
SiW – HNO ₃ 10% (type D)	22
SiW – HNO ₃ 20% (type D)	22
SiW – None (type E)	14
SiW – HCl (type E)	8.3
SiW – None (type F)	16

Table S1. Leaching rate of SiW (%) after hydrolysis of cellobiose.