Supporting Information

Contents:

1. General remarks	2
2. Preparation of the compound α -isocyanoacetamides 2	2
3. Typical experimental procedure for the catalytic asymmetric reaction	3
4. X-ray crystallographic structure of the product 3ae and proposed mechanism	3
5. Optimization of the reaction conditions	9
6. Synthetic transformation of the products	11
7. The analytical and spectral characterization data of the products	13
8. References	43
9. Copies of NMR spectra	44
10. Copy of CD spectra	89

1. General remarks

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. ¹³C NMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). The enantiomeric excess was determined by HPLC analysis employing a chiral stationary phase column specified in the individual experiment, by comparing the samples with the appropriate racemic mixtures. Optical rotations were measured on a commercial polarimeter and reported as follows: $\left[\alpha\right]_{D}^{1}$ (c = g/100 mL, solvent). HR-ESIMS spectra were recorded using a commercial apparatus and methanol or acetonitrile was used to dissolve the sample. Unless otherwise indicated, reagents obtained from commercial sources were used without further purification. Solvents were dried and distilled prior to use according to the standard methods. The N,N'-dioxides were prepared according to the previous reports.¹ All racemic products were obtained by using Mg(OTf)₂ (10 mol%) in concert with racemic N,N'-dioxide ligand (L-PiPr₂, 10 mol%) as the catalyst. Starting materials of alkylidene malonates **1** were prepared according to reported procedure.²

2. Preparation of the compound α-isocyanoacetamides 2

The α -isocyanoacetamide substrates were synthesized by the procedure in the literature.³

2.1 Method A: Preparation of α-isocyanoacetamides 2a, 2b, 2d-2h.

$$\begin{array}{c} R^{1} \\ H_{2}N \\ \hline COOH \end{array} \xrightarrow{(1) \text{HCOOH, Ac}_{2}O} \\ (2) \text{EDCI, HOBt} \\ HNR^{2}R^{3} \end{array} \xrightarrow{(1) \text{HCOOH, Ac}_{2}O} OHCHN \\ \hline OHCHN \\ OHCHN \\ O \end{array} \xrightarrow{(1) \text{HOCI}_{3}, \text{Et}_{3}N} OHCHN \\ (1) \text{HCOOH}_{2}OHCHN \\ OHCHN \\ O$$

Acetic anhydride (17.0 mL, 180.2 mmol, 7.2 equiv) was added dropwise to a solution of amino acid (25.0 mmol, 1.0 equiv) in HCOOH (50.0 mL) at 0 $^{\circ}$ C. After the addition was complete, the reaction mixture was stirred at r.t. for an additional 1 h. Ice-water (20.0 mL) was added and the mixture was concentrated at reduced pressure to give the analytically pure white crystalline *N*-formyl amino acid.

To a solution of *N*-formyl amino acid (19.0 mmol, 1.0 equiv) and HNR^2R^3 (22.9 mmol, 1.2 equiv) in CH₂Cl₂ (50.0 mL) were added Et₃N (3.2 mL, 23.2 mmol, 1.2 equiv), HOBt (3.11 g, 23.0 mmol, 1.2 equiv) and EDCI (4.41 g, 23.0 mmol, 1.2 equiv) successively and the reaction mixture was stirred for 24 h at r.t. The reaction mixture was diluted with sat. NH₄Cl and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over anhyd Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether–EtOAc, 1:1 then EtOAc) to give the amide.

A stirred solution of amide (18.5 mmol, 1.0 equiv) and Et₃N (12.8 mL, 92.0 mmol, 5.0 equiv) in CH₂Cl₂ (90.0 mL) was cooled to -30 °C. Phosphorus oxychloride (2.6 mL, 27.5 mmol, 1.5 equiv) was added dropwise and the reaction mixture was stirred for 3 h at -30 °C. An aq sat solution of Na₂CO₃ was introduced dropwise so that the temperature of mixture was maintained at -30 °C. The mixture was stirred for 0.5 h and raised to r.t. The aqueous layer was separated and extracted with CH₂Cl₂. The organic extracts were combined, washed with brine, dried over anhyd Na₂SO₄ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel to provide the isocyanide.

2.2 Method B: Preparation of α-isocyanoacetamide 2c and 2i

$$CN \frown COOMe \xrightarrow{HNR^2R^3} CN \overbrace{O}^{VR^2R^3} \xrightarrow{CsOH, CH_3CN} CN \overbrace{O}^{VR^2R^3} \underbrace{CsOH, CH_3CN}_{Mel, 0 \ ^\circC, 20 \ h} CN \overbrace{O}^{VR^2R^3} \underbrace{2c}^{NR^2R^3}$$

To methyl α -isocyanoacetate (4.4 mmol) was added morpholine (10.3 mmol, 2.3 equiv) and the reaction mixture was stirred at r.t. for 24 h. The crude material was purified by flash chromatography (SiO₂, EtOAc–petroleum ether = 2:1) to afford α -isocyanoacetamide **2i**.

To a dry test tube containing CsOH H₂O (0.34 mmol, 1.7 equiv) were added, under argon atmosphere, a solution of isocyano acetamide **2i** (0.20 mmol) in MeCN (1.0 mL) and MeI (0.21 mmol) at 0 °C. The resulting reaction mixture was stirred at 0 °C. When the reaction was deemed complete, the volatile was removed under reduced pressure. Purification of the crude product by flash chromatography (silica gel) afforded the desired product α -isocyanoacetamide **2c**.

3. Typical experimental procedure for the catalytic asymmetric reaction

A dry reaction tube was charged with Mg(OTf)₂ (0.012 mmol), **L-RaPr₂** (0.01 mmol) and dimethyl 2-benzylidenemalonate **1a** (0.1 mmol). CH₂Cl₂ (1.0 mL) was added, and the mixture was stirred at 30 °C for 0.5 h. Subsequently, α -isocyanoacetamide **2e** (0.15 mmol, 1.5 equiv) was added at 0 °C in one portion. After being stirred at 0 °C for 3 days, the crude reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 7/1) to afford the desired product **3ae** as a white solid.

4. X-ray crystallographic structure of the product 3ae and proposed mechanism The configuration of 3ae was determined to be R by single-crystal X-ray crystallographic analysis. Based on previous reports as well, a possible catalytic model has been proposed.

Single crystal of **3ae** $[C_{23}H_{30}N_2O_6]$ was obtained from the mixed solvents of ethyl acetate and petroleum ether. CCDC 1416058 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

a) Proposed catalytic cycle

b) HRMS and ¹H NMR analysis of substrates and catalyst

(1) 2e in CDCl₃; (2) Mg(OTf)₂/L-RaPr₂/2e (1.2/1/1) in CDCl₃.

(1) 1a in CDCl₃; (2) Mg(OTf)₂/L-RaPr₂/1a (1.2/1/1) in CDCl₃.

The mixture of L-RaPr₂ and Mg(OTf)₂ (1:1)

As show by the ¹H NMR spectra, the proton signal of **1a** was obviously affected by catalyst $Mg(OTf)_2/L$ -RaPr₂. ESI-MS analysis confirmed the coordination of the substrate **1a** to the catalyst.

c) Deuterium labeling studies

The mixture of L-RaPr₂, Mg(OTf)₂ and 1a (1:1:1)

^{(1) 73%} D; (2) 9% D; (3) 0% D.

As show by the deuterium labeling studies, the use of $D-\alpha$ -isocyanoacetamide led to surprisingly low deuterium labeling on the product (9%), the use of CDCl₃ resulted in no deuterium labeling on the product (0%), but a small amount of D_2O resulted in significant deuterium labeling on the product (73%). This interesting observation suggests that proton transfer is facilitated by a trace amount of water.

d) ¹H NMR monitoring reaction process

(1) 0 h. (2) 1 h. (3) 2 h. (4) 4 h. (5) 18 h. (6) 24 h.

As show by ¹H NMR of the reaction mixture, no obvious intermediates were detected.

e) Operando IR experiments

As the peak at 1661 cm⁻¹ related to α -isocyanoacetamide **2e**, 1630, 1204, 1084 cm⁻¹ related to methyl 2-benzylidenemalonate (**1a**), and 1758, 1117, 1030 cm⁻¹ related to the product. As show by the operando IR experiments, the product was formed gradually with disappearance of the substrates, and no intermediates were detected, indicating that the reaction must proceed by a concerted pathway.

5. Optimization of the Reaction Conditions

5.1 Screening of the metal salts and ligands

	MeOOC				
	COOMe + CN	$N = \frac{1}{CH_2CI}$	tal/L D mol%) 2, 30 °C		
	1a 2	а	3aa		
		≓0 `Ar	$Ar^{N-H} - C_{6}H_{5}$	Y−0 N _A r	
	L-PrPr₂ : Ar = 2,6- <i>i</i> Pr ₂ C ₆ H ₃	, n = 1	L-RaMe ₂ : Ar = 2,6-Me ₂	C ₆ H ₃	
	L-PiPh: Ar = C_6H_5 , n = 2	0	L-RaEt ₂ : Ar = 2,6-Et ₂ C ₆	₅ Н ₃	
	L-PIPr₂: Ar = 2,6-/Pr ₂ C ₆ H ₃	, n = 2	L-RaPr₃ : Ar = 2,4,6- <i>i</i> Pr ₃ :	₆ , 13 ₃ C ₆ H ₂	
Entry ^[a]	Metal	Ligand	Yield [%] ^[b]	ee [%] ^[c]	
1	$Zn(OTf)_2$	L-PiPr ₂	N.R	-	
2	Cu(OTf) ₂	L-PiPr ₂	N.R	-	
3	Ni(BF ₄) ₂ 6H ₂ O	L-PiPr ₂	N.R	-	
4	Mg(OTf) ₂	L-PiPr ₂	93	70	
5	Mg(OTf) ₂	L-PiPh	99	-6	
6	$Mg(OTf)_2$	L-PrPr ₂	72	76	
7	Mg(OTf) ₂	L-RaPr ₂	99	82	
8	Mg(OTf) ₂	L-RaPh	99	0	
9	Mg(OTf) ₂	L-RaMe ₂	99	2	
10	Mg(OTf) ₂	L-RaEt ₂	94	58	

[a] Unless specified otherwise, reactions were performed with Metal/L (1:1, 10 mol%), **1a** (0.1 mmol), **2** (0.15 mmol) in 1.0 mL CH₂Cl₂. [b] Isolated yield. [c] Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

5.2 Screening of the solvents and reaction temperature

	COOMe COOMe		Mg(OTf)₂/ L-RaPr₂ (1:1, 10 mol%)		
	1a	2a		Bn 3aa	
Entry ^[a]	solvent	$T [^{\circ}C]$	T [h]	Yield [%] ^[b]	ee [%] ^[c]
1	CH_2Cl_2	30	24	99	82
2	THF	30	24	trace	-
3	Et_2O	30	24	87	72
4	Toluene	30	24	71	69
5	EtOAc	30	24	N.R	-
6	CH ₃ CN	30	24	22	80
7	CHCl ₃	30	24	84	78
8	ClCH ₂ CH ₂ Cl	30	24	96	78
9	Cl ₂ CHCH ₂ Cl	30	24	88	77

10	ClCH ₂ CHCl ₂	30	24	61	74
11	Cl ₃ CCH ₃	30	24	86	76
12	CH_2Cl_2	0	48	63	86
13	CH_2Cl_2	-10	48	16	86

[a] Unless specified otherwise, reactions were performed with Mg(OTf)₂/L-RaPr₂ (1:1, 10 mol%),
1a (0.1 mmol), 2 (0.15 mmol) in 1.0 mL solvent. [b] Isolated yield. [c] Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

5.3 Other conditions

	COOMe + CN´ OMe		lg(OTf) ₂ / L-RaP (10 mol%) CH ₂ Cl ₂ , 0 °C	MeOOC T2 T2 T3	OOMe
та Т. [a]	D	2	77 (1.)	• • • • • • • • • • • • • • • • • • •	
Entry	R	M/L	T [h]	Yield [%] ¹⁸¹	ee [%] ^[e]
1	Bn(2a)	1:1	48	63	86
2	Ph(2b)	1:1	48	86	87
3	Ph(2b)	1:2	60	79	87
4	Ph(2b)	1:1.5	60	80	87
5	Ph(2b)	1:1.2	60	85	87
6	Ph(2b)	1.2:1	60	99	87
7	Ph(2b)	1.5:1	60	99	86
8	Ph(2b)	2:1	60	99	86
9	Me(2c)	1:1	72	61	86
10	<i>i</i> Pr(2d)	1:1	72	91	89
11	<i>t</i> Bu(2e)	1:1	72	75	92
12	<i>t</i> Bu(2e)	1:1.1	72	46	92
13	<i>t</i> Bu(2e)	1.1:1	72	83	92
14	<i>t</i> Bu(2e)	1.2:1	72	91	92
15	<i>t</i> Bu(2e)	1.3:1	72	91	92
16	<i>t</i> Bu(2e)	1.4:1	72	90	91
17	<i>t</i> Bu(2e)	1.5:1	72	95	91

[a] Unless specified otherwise, reactions were performed with Mg(OTf)₂/L-RaPr₂ (10 mol%), 1a (0.1 mmol), 2 (0.15 mmol) in 1.0 mL solvent. [b] Isolated yield. [c] Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

6. Synthetic transformation of the products

To a solution of adduct **3ae** (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was added LiAlH₄ (38.0 mg, 5.0 equiv) at 0 °C. The mixture was allowed to stir at room temperature for 2 h. Excess of LiAlH₄ was quenched with NH₄Cl (sat.). The mixture was extracted with EtOAc, and the organic layer was dried over anhydrous Na₂SO₄ and then was evaporated by rotary evaporator. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1) to afford **5** (67.2 mg, 90% yield) as a yellow oil.

To the solution of 5-aminoxazole **3ae** (0.3 mmol, 1.0 equiv) in THF/H₂O (4:1, 0.05 M), TFA (50 equiv) was added and the reaction stirred at room temperature for 24 h. The reaction mixture was quenched with KHCO₃ (sat.) and extracted with EtOAc, dried with Na₂SO₄, filtered, and concentrated in vacuo. This crude mixture was then immediately purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1/1) to afford the dipeptide **6**.

To the solution of 5-aminoxazole **3ae** (0.3 mmol, 1.0 equiv) in CH₃CN/H₂O (9:1, 0.05 M), ceric ammonium nitrate (4.0 equiv) was added. The reaction was allowed to stir until completion via TLC and then diluted with ethyl acetate and water. After extracting with ethyl acetate, the organic fractions were combined, washed with NaHCO₃ (sat.) and brine, dried with MgSO₄, filtered, and concentrated in vacuo. This crude mixture was then immediately purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3/1) to afford the imide **7**.

To the solution of imide 7 (0.4 mmol, 1.0 equiv) in DMSO (0.5 M) was added LiCl (2.1 equiv) and H_2O (1.1 equiv). The reaction was allowed to stir at 130 °C for 5h, and then quenched with EtOAc/H₂O, extracted with EtOAc, dried with Na₂SO₄, filtered, and concentrated in vacuo. This crude mixture was then immediately purified by flash chromatography on silica gel (petroleum

ether/ethyl acetate = 4/1) to afford the product **8**.

To the solution of 5-aminoxazole **3ab** (0.8 mmol, 1.0 equiv) in DMSO (0.5 M) was added LiCl (2.1 equiv) and H₂O (1.1 equiv). The reaction was allowed to stir at 130 °C for 5h, and then quenched with EtOAc/H₂O, extracted with EtOAc, dried with Na₂SO₄, filtered, and concentrated in vacuo. This crude mixture was then immediately purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4/1) to afford the product **9**.

To the solution of **9** (0.3 mmol, 1.0 equiv) in CH₃CN/H₂O (9:1, 0.05 M), ceric ammonium nitrate (4.0 equiv) was added. The reaction was allowed to stir until completion via TLC and then diluted with ethyl acetate and water. After extracting with ethyl acetate, the organic fractions were combined, washed with NaHCO₃ (sat.) and brine, dried with MgSO₄, filtered, and concentrated in vacuo. This crude mixture was then immediately purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3/1) to afford the imide **10**.

To a solution of adduct **9** (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was added LiAlH₄ (38.0 mg, 5.0 equiv) at 0 °C. The mixture was allowed to stir at room temperature for 2 h. Excess of LiAlH₄ was quenched with NH₄Cl (sat.). The mixture was extracted with EtOAc, and the organic layer was dried over anhydrous Na₂SO₄ and then was evaporated by rotary evaporator. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1) to afford **11** as a yellow oil.

7. The analytical and spectral characterization data of the products

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3ae

 $(C_{23}H_{30}N_2O_6)$ white solid; 91% yield, 92% *ee*. $[\alpha]_D^{20} = -68.9$ (*c* 1.36 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.08 min (major), 8.60 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.10 (m, 5H), 4.65 (d, J = 11.8 Hz, 1H),

4.29 (d, J = 11.8 Hz, 1H), 3.72 - 3.54 (m, 7H), 3.40 (s, 3H), 2.91 - 2.71 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.95, 166.51, 156.34, 148.83, 135.64, 134.85, 127.59, 127.38, 126.70, 65.91, 55.48, 51.67, 51.47, 50.90, 44.16, 30.38, 28.59. ESI-HRMS: calcd for C₂₃H₃₀N₂NaO₆⁺ ([M+Na⁺]) 453.1996, found 453.2006.

diethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3be

 $(C_{25}H_{34}N_2O_6)$ colorless oil; 71% yield, 91% *ee*. $[\alpha]_D^{20} = -69.9$ (*c* 0.61 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 7.15 min (minor), 7.83 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, *J* = 7.0, 4.9 Hz, 4H), 7.26 - 7.17 (m, 1H),

4.71 (d, J = 11.9 Hz, 1H), 4.36 (d, J = 11.9 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.93 (q, J = 7.1 Hz, 2H), 3.71 (dd, J = 5.4, 2.6 Hz, 4H), 2.96 – 2.80 (m, 4H), 1.25 (s, 9H), 1.20 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.48, 167.23, 157.52, 149.74, 136.79, 135.92, 128.53, 127.63, 66.96, 61.57, 61.44, 56.75, 51.94, 45.14, 31.39, 29.63, 14.09, 13.71. ESI-HRMS: calcd for C₂₅H₃₄N₂NaO₆⁺ ([M+Na⁺]) 481.2309, found 481.2310.

	Retention Time	Area	% Area	Height
1	7.415	1584312	53.43	99774
2	8.090	1380736	46.57	81710

	Retention Time	Area	% Area	Height
1	7.145	111397	4.50	7441
2	7.827	2363512	95.50	140517

diisopropyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3ce

 $(C_{27}H_{38}N_2O_6)$ colorless oil; 41% yield, 82% *ee*. $[\alpha]_D^{20} = -66.8$ (*c* 0.37 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.44 min (minor), 6.12 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 1H), 7.25 – 7.20 (m, 4H), 4.97 (dt,

J = 12.5, 6.3 Hz, 1H), 4.77 (dt, J = 12.5, 6.3 Hz, 1H), 4.69 (d, J = 12.0 Hz, 1H), 4.33 (d, J = 12.0 Hz, 1H), 3.72 (dd, J = 5.6, 3.1 Hz, 4H), 2.94 – 2.82 (m, 4H), 1.25 (s, 9H), 1.22 (d, J = 6.3 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H), 1.07 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.94, 166.78, 157.68, 149.63, 136.89, 135.95, 128.62, 128.48, 127.55, 69.01, 68.95, 66.97, 57.02, 51.96, 44.97, 31.39, 29.65, 21.65, 21.50, 21.37, 21.18. ESI-HRMS: calcd for C₂₇H₃₈N₂NaO₆⁺ ([M+Na⁺]) 509.2622, found 509.2627.

2041746

90.94

167379

2

6.116

($C_{23}H_{29}FN_2O_6$) colorless oil; 66% yield, 80% *ee*. $[\alpha]_D^{20} = -47.6$ (*c* 0.59 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.11 min (major), 7.95 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.14 (m, 2H), 7.08 – 6.89 (m, 2H), 4.99 (d,

J = 11.6 Hz, 1H), 4.36 (d, J = 11.6 Hz, 1H), 3.72 – 3.56 (m, 7H), 3.44 (s, 3H), 2.87 – 2.73 (m, 4H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.90, 167.33, 160.59 (d, J = 247.0 Hz), 156.53, 149.88, 135.98, 130.13 (d, J = 3.5 Hz), 129.53 (d, J = 8.2 Hz), 124.27 (d, J = 3.5 Hz), 123.83 (d, J = 14.1 Hz), 115.71 (d, J = 22.1 Hz), 66.92, 55.11, 52.66 (d, J = 17.2 Hz), 51.87, 38.49, 38.47, 31.40, 29.58. ESI-HRMS: calcd for C₂₃H₂₉FN₂NaO₆⁺ ([M+Na⁺]) 471.1902, found 471.1906.

	Retention Time	Area	% Area	Height
1	5.111	2004271	90.24	183963
2	7.947	216875	9.76	6447

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(3-fluorophenyl)methyl)malonate 3ee

MeO₂C MeO₂C MeO₂C N $(C_{23}H_{29}FN_2O_6)$ white solid; 92% yield, 91% *ee*. $[\alpha]_D^{20} = -60.6$ (*c* 0.79 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.15 min (major), 9.62 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.24 - 7.16 (m, 1H), 7.04 - 6.97 (m, 1H), 6.95 -

6.77 (m, 2H), 4.66 (d, J = 11.6 Hz, 1H), 4.27 (d, J = 11.6 Hz, 1H), 3.76 – 3.57 (m, 7H), 3.45 (s, 3H), 2.92 – 2.72 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.74, 167.34, 162.72 (d, J = 245.0 Hz), 156.80, 150.01, 139.11 (d, J = 7.2 Hz), 136.04, 130.12 (d, J = 8.2 Hz), 124.3 (d, J = 2.9 Hz), 115.37 (d, J = 22.1 Hz), 114.80 (d, J = 20.9 Hz), 66.92, 56.30, 52.70 (d, J = 15.9 Hz), 51.91, 44.78, 44.76, 31.42, 29.58. ESI-HRMS: calcd for $C_{23}H_{29}FN_2NaO_6^+$ ([M+Na⁺]) 471.1902, found 471.1904.

	Retention Time	Area	% Area	Height
1	5.147	2108909	95.61	184123
2	9.620	96910	4.39	1864

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(3-chlorophenyl)methyl)malonate 3fe

(C₂₃H₂₉ClN₂O₆) white solid; 77 % yield, 91% *ee*. $[\alpha]_D^{20} = -57.6$ (*c* 0.88 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.30 min (major), 12.68 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.06 (m, 4H), 4.63 (d, *J* = 11.6 Hz, 1H),

4.26 (d, J = 11.6 Hz, 1H), 3.74 – 3.57 (m, 7H), 3.45 (s, 3H), 2.90 – 2.73 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.69, 167.29, 156.70, 150.03, 138.68, 136.07, 134.37, 129.87, 128.61, 128.01, 126.68, 66.92, 56.27, 52.77, 52.62, 51.91, 44.74, 31.42, 29.58. ESI-HRMS: calcd for C₂₃H₂₉^{34.9689}ClN₂NaO₆⁺ ([M+Na⁺]) 487.1606, found 487.1614, calcd for C₂₃H₂₉^{36.9659}ClN₂NaO₆⁺ ([M+Na⁺]) 489.1577, found 489.1602.

	Retention Time	Area	% Area	Height
1	5.355	1897848	50.10	161034
2	11.921	1890580	49.90	19888

	Retention Time	Area	% Area	Height
1	5.297	2167310	95.72	184692
2	12.680	97008	4.28	1354

dimethyl 2-((3-bromophenyl)(4-tert-butyl-5-morpholinooxazol-2-yl)methyl)malonate 3ge

 $(C_{23}H_{29}BrN_2O_6)$ white solid; 96% yield, 91% *ee*. $[\alpha]_D^{20} = -54.5$ (*c* 0.95 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.43 min (major), 12.94 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.26 (m, 2H), 7.18 – 7.04 (m, 2H), 4.62 (d, *J*

= 11.6 Hz, 1H), 4.26 (d, J = 11.6 Hz, 1H), 3.71 – 3.58 (m, 7H), 3.46 (s, 3H), 2.92 – 2.75 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.68, 167.28, 156.68, 150.04, 138.93, 136.07, 131.54, 130.94, 130.17, 127.13, 122.52, 66.92, 56.29, 52.79, 52.65, 51.91, 44.69, 31.42, 29.58. ESI-HRMS: calcd for C₂₃H₂₉^{78.9183}BrN₂NaO₆⁺ ([M+Na⁺]) 530.1101, found 530.1103, calcd for C₂₃H₂₉^{80.9163}BrN₂NaO₆⁺ ([M+Na⁺]) 533.1081, found 533.1090.

	Retention Time	Area	% Area	Height
1	5.432	2923839	95.53	244747
2	12.940	136949	4.47	1962

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(m-tolyl)methyl)malonate 3he

 $(C_{24}H_{32}N_2O_6)$ white solid; 66% yield, 94% *ee*. $[\alpha]_D^{20} = -68.1$ (*c* 0.54 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm,

retention time: 5.12 min (major), 9.37 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.00 (m, 4H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.35 (d, *J* = 11.8 Hz, 1H), 3.79 – 3.63 (m, 7H), 3.49 (s, 3H), 2.96 – 2.79 (m, 4H), 2.32 (s, 3H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.02, 167.56, 157.43, 149.78, 138.19, 136.58, 135.87, 129.18, 128.46, 125.33, 66.96, 56.55, 52.67, 52.48, 51.94, 45.13, 31.40, 29.61, 21.42. ESI-HRMS: calcd for C₂₄H₃₂N₂NaO₆⁺ ([M+Na⁺]) 467.2153, found 467.2153.

	Retention Time	Area	% Area	Height
1	5.116	514905	96.97	49460
2	9.367	16091	3.03	426

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(3-methoxyphenyl)methyl)malonate 3ie

(C₂₄H₃₂N₂O₇) colorless oil; 81% yield, 90% *ee*. $[\alpha]_D^{20} = -61.7$ (*c* 0.61 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.47 min (major), 14.68 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 7.8 Hz, 1H), 6.74 (dt, *J* = 8.0, 4.8 Hz,

3H), 4.63 (d, J = 11.8 Hz, 1H), 4.29 (d, J = 11.8 Hz, 1H), 3.70 (s, 3H), 3.67 – 3.52 (m, 7H), 3.44 (s, 3H), 2.87 – 2.74 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.96, 167.50, 159.62, 157.28, 149.82, 138.13, 135.89, 129.57, 120.73, 113.86, 113.33, 66.95, 56.50, 55.15, 52.71, 52.57, 51.94, 45.11, 31.41, 29.60. ESI-HRMS: calcd for C₂₄H₃₂N₂NaO₇⁺ ([M+Na⁺]) 483.2102, found 483.2104.

	Retention Time	Area	% Area	Height
1	6.471	1476464	95.10	104441
2	14.675	76019	4.90	1019

 $(C_{29}H_{34}N_2O_7)$ colorless oil; 84% yield, 88% *ee*. $[\alpha]_D^{20} = -52.9$ (*c* 1.21 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.52 min (major), 6.56 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.15 (m, 3H), 7.06 – 6.71 (m, 6H), 4.63 (d, *J* = 11.6 Hz, 1H), 4.24 (d, *J* = 11.6 Hz, 1H), 3.74 – 3.55 (m, 7H),

3.46 (s, 3H), 2.89 – 2.68 (m, 4H), 1.15 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.85, 167.39, 157.39, 157.01, 156.95, 149.90, 138.61, 135.96, 129.94, 129.76, 123.42, 123.33, 118.90, 118.66, 118.28, 66.94, 56.39, 52.74, 52.60, 51.91, 44.97, 31.39, 29.59. ESI-HRMS: calcd for C₂₉H₃₄N₂NaO₇⁺ ([M+Na⁺]) 545.2258, found 545.2266.

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-fluorophenyl)methyl)malonate 3ke

6.02

10136

219357

2

6.555

 $(C_{23}H_{29}FN_2O_6)$ white solid; 86% yield, 93% *ee*. $[\alpha]_D^{20} = -61.0$ (*c* 1.61 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.62 min (major), 8.38 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 6.91 (t, *J* = 8.6 Hz, 2H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.26 (d, J = 11.8 H

11.8 Hz, 1H), 3.64 (dd, J = 6.7, 4.0 Hz, 7H), 3.43 (s, 3H), 2.91 – 2.72 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.83, 167.47, 162.25 (d, J = 245.0 Hz), 157.18, 149.92, 135.98, 132.45 (d, J = 3.2 Hz), 130.08 (d, J = 8.1 Hz), 115.56 (d, J = 21.4 Hz), 66.92, 56.49, 52.75, 52.59, 51.91, 44.39, 31.41, 29.58. ESI-HRMS: calcd for C₂₃H₂₉FN₂NaO₆⁺ ([M+Na⁺]) 471.1902, found 471.1907.

	Retention Time	Area	% Area	Height
1	5.617	1220150	96.45	103577
2	8.381	44878	3.55	1138

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-chlorophenyl)methyl)malonate 3le

 $(C_{23}H_{29}CIN_2O_6)$ white solid; 96% yield, 94% *ee*. $[\alpha]_D^{20} = -52.3$ (*c* 1.63 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.77 min (major), 11.68 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.11 (m, 4H), 4.64 (d, J = 11.6 Hz, 1H), 4.26 (d, J = 11.6 Hz, 1H), 3.74 –

3.55 (m, 7H), 3.45 (s, 3H), 2.89 – 2.70 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.75, 167.37, 156.93, 149.98, 136.03, 135.21, 133.69, 129.81, 128.84, 66.92, 56.28, 52.79, 52.65, 51.91, 44.49, 31.41, 29.58. ESI-HRMS: calcd for C₂₃H₂₉^{34.9689}ClN₂NaO₆⁺ ([M+Na⁺]) 487.1606, found 487.1612, calcd for C₂₃H₂₉^{36.9659}ClN₂NaO₆⁺ ([M+Na⁺]) 489.1577, found 489.1602.

1	2 ((1 hrom	onhonvl)(/	tout butul 5	momholin	oovozol 2	ul)mothul)m
	2	11.683	48179	3.06	717	

dimethyl 2-((4-bromophenyl)(4-tert-butyl-5-morpholinooxazol-2-yl)methyl)malonate 3me

 $(C_{23}H_{29}BrN_2O_6)$ white solid; 93% yield, 94% *ee*. $[\alpha]_D^{20} = -46.9$ (*c* 1.76 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.97 min (major), 14.11 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.70 (d, *J* = 11.6 Hz, 1H), 4.33

 $(d, J = 11.6 \text{ Hz}, 1\text{H}), 3.78 - 3.56 \text{ (m, 7H)}, 3.52 \text{ (s, 3H)}, 2.94 - 2.80 \text{ (m, 4H)}, 1.25 \text{ (s, 9H)}. {}^{13}\text{C} \\ \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 167.74, 167.35, 156.86, 149.99, 136.02, 135.73, 131.80, 130.16, \\ 121.88, 66.92, 56.21, 52.81, 52.68, 51.91, 44.54, 31.41, 29.58. ESI-HRMS: calcd for \\ C_{23}H_{29}^{78.9183}\text{BrN}_2\text{NaO}_6^+ ([\text{M+Na}^+]) 530.1101, found 530.1102, calcd for \\ C_{23}H_{29}^{80.9163}\text{BrN}_2\text{NaO}_6^+ ([\text{M+Na}^+]) 533.1081, found 533.1086. \\ \end{cases}$

	Retention Time	Area	% Area	Height
1	6.172	1652794	49.61	129120
2	14.200	1678780	50.39	13579

1	5.971	1329639	97.16	107527
2	14.112	38805	2.84	511

dimethyl

2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-(trifluoromethyl)phenyl)methyl)malonate 3ne

 $(C_{24}H_{29}F_3N_2O_6)$ white solid; 86% yield, 92% *ee*. $[\alpha]_D^{20} = -53.2$ (*c* 1.80 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 4.76 min (major), 7.40 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 4.73 (d, *J* = 11.7 Hz, 1H), 4.31

(d, J = 11.7 Hz, 1H), 3.75 - 3.55 (m, 7H), 3.44 (s, 3H), 2.91 - 2.69 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.63, 167.24, 156.57, 150.11, 140.72, 136.15, 130.01 (q, J = 32.3 Hz), 128.90, 125.50 (d, J = 3.8 Hz), 122.62, 66.90, 56.15, 52.85, 52.67, 51.90, 44.82, 31.43, 29.56. ESI-HRMS: calcd for C₂₄H₂₉F₃N₂NaO₆⁺ ([M+Na⁺]) 521.1870, found 521.1870.

	Retention Time	Area	% Area	Height
1	4.755	1110748	95.89	106712
2	7.400	47573	4.11	1108

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-cyanophenyl)methyl)malonate 3oe

 $(C_{24}H_{29}N_3O_6)$ white solid; 98% yield, 94% *ee*. $[\alpha]_D^{20} = -48.2$ (*c* 1.72 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol =

80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 9.58 min (major), 12.73 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 4.72 (d, *J* = 11.7 Hz, 1H), 4.29 (d, *J* = 11.7 Hz, 1H), 3.64 (s, 7H), 3.45 (s, 3H), 2.92 – 2.68 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.44, 167.12, 156.15, 150.24, 142.04, 136.28, 132.45, 129.35, 118.45, 111.87, 66.87, 55.94, 52.91, 52.75, 51.88, 44.96, 31.44, 29.55. ESI-HRMS: calcd for C₂₄H₂₉N₃NaO₆⁺ ([M+Na⁺]) 478.1949, found 478.1956.

	Retention Time	Area	% Area	Height
1	9.576	5169436	97.23	281156
2	12.731	147491	2.77	4093

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-nitrophenyl)methyl)malonate 3pe

($C_{23}H_{29}N_3O_8$) white solid; 91% yield, 94% *ee*. $[\alpha]_D^{20} = -51.5$ (*c* 0.85 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 7.26 min (major), 12.42 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 4.79 (d, *J* = 11.6 Hz, 1H), 4.32 (d,

 $J = 11.6 \text{ Hz}, 1\text{H}, 3.74 - 3.57 \text{ (m, 7H)}, 3.46 \text{ (s, 3H)}, 2.92 - 2.67 \text{ (m, 4H)}, 1.18 \text{ (s, 9H)}. {}^{13}\text{C}$ NMR (100 MHz, CDCl₃) & 167.41, 167.08, 156.04, 150.30, 147.53, 144.00, 136.35, 129.53, 123.87, 66.87, 55.94, 52.97, 52.82, 51.88, 44.71, 31.45, 29.55. ESI-HRMS: calcd for $C_{23}H_{29}N_3NaO_8^+$ ([M+Na⁺]) 498.1847, found 498.1858.

	Retention Time	Area	% Area	Height
1	6.990	3354989	53.51	244785
2	11.335	2915005	46.49	56427

	Retention Time	Area	% Area	Height
1	7.264	6697373	96.99	468745
2	12.418	207792	3.01	3867

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(p-tolyl)methyl)malonate 3qe

 $(C_{24}H_{32}N_2O_6)$ colorless oil; 83% yield, 94% *ee*. $[\alpha]_D^{20} = -63.2$ (*c* 1.29 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.84 min (major), 17.80 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, *J* = 28.0, 8.0 Hz, 4H), 4.69 (d, *J* = 11.8 Hz, 1H), 4.34 (d, *J* = 11.8 Hz,

1H), 3.80 - 3.63 (m, 7H), 3.50 (s, 3H), 2.96 - 2.80 (m, 4H), 2.30 (s, 3H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.04, 167.57, 157.53, 149.76, 137.35, 135.83, 133.63, 129.32, 128.23, 66.95, 56.58, 52.68, 52.52, 51.93, 44.82, 31.39, 29.61, 21.10. ESI-HRMS: calcd for $C_{24}H_{32}N_2NaO_6^+$ ([M+Na⁺]) 467.2153, found 467.2154.

	Retention Time	Area	% Area	Height
1	6.835	1065583	97.15	75046
2	17.804	31293	2.85	323

dimethyl 2-(biphenyl-4-yl(4-tert-butyl-5-morpholinooxazol-2-yl)methyl)malonate 3re

(C₂₉H₃₄N₂O₆) white solid; 98% yield, 91% *ee*. $[\alpha]_D^{20} = -42.9$ (*c* 3.14 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 10.82 min (major), 13.34 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J*

= 12.0, 7.9 Hz, 4H), 7.37 (qd, J = 15.1, 7.4 Hz, 5H), 4.79 (d, J = 11.8 Hz, 1H), 4.41 (d, J = 11.8 Hz, 1H), 3.71 (d, J = 5.9 Hz, 7H), 3.51 (s, 3H), 3.01 – 2.77 (m, 4H), 1.32 – 1.22 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.97, 167.57, 157.32, 149.91, 140.49, 140.45, 135.96, 135.70, 128.85, 128.80, 127.42, 127.29, 126.99, 66.96, 56.50, 52.76, 52.61, 51.96, 44.87, 31.44, 29.65. ESI-HRMS: calcd for C₂₉H₃₅N₂O₆⁺ ([M+H⁺]) 507.2490, found 507.2488.

	Retention Time	Area	% Area	Height
1	10.819	10583335	95.50	460729
2	13.343	498390	4.50	8402

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-methoxyphenyl)methyl)malonate 3se

(C₂₄H₃₂N₂O₇) colorless oil; 87% yield, 96% *ee*. $[\alpha]_D^{20} = -64.7$ (*c* 0.73 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 8.03 min (major), 18.26 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.11 (m, 2H), 6.89 – 6.65 (m, 2H), 4.68 (d, *J* = 11.6 Hz, 1H), 4.32 (d, *J* = 11.6 Hz, 1H), 3.77 (s, 3H), 3.76 – 3.62 (m, 7H), 3.51 (s, 3H), 3.03 –

2.70 (m, 4H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.03, 167.63, 159.02, 157.62, 149.75, 135.84, 129.48, 128.70, 113.97, 66.96, 56.66, 55.17, 52.67, 52.54, 51.93, 44.43, 31.39, 29.61. ESI-HRMS: calcd for C₂₄H₃₂N₂NaO₇⁺ ([M+Na⁺]) 483.2102, found 483.2106.

	Retention Time	Area	% Area	Height
1	8.105	386632	49.10	24013
2	18.821	400801	50.90	3322

	Retention Time	Area	% Area	Height
1	8.028	1210793	98.14	74854
2	18.264	22939	1.86	410

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(4-phenoxyphenyl)methyl)malonate 3te

 $(C_{29}H_{34}N_2O_7)$ colorless oil; 64% yield, 92% *ee*. $[\alpha]_D^{20} = -50.3$ (*c* 0.66 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.77 min (major), 9.90 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 2H), 7.23 (d, *J* = 8.6 Hz, 2H), 7.17 – 7.06 (m, 1H), 7.04 – 6.87 (m,

4H), 4.72 (d, J = 11.6 Hz, 1H), 4.34 (d, J = 11.6 Hz, 1H), 3.79 – 3.64 (m, 7H), 3.53 (s, 3H), 2.98 – 2.79 (m, 4H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.93, 167.57, 157.37, 156.97, 156.73, 149.86, 135.93, 131.24, 129.78, 129.77, 123.57, 119.21, 118.56, 66.96, 56.64, 52.72, 52.58, 51.94, 44.50, 31.42, 29.61. ESI-HRMS: calcd for C₂₉H₃₅N₂O₇⁺ ([M+H⁺]) 523.2439, found 523.2440.

dimethyl

2-((4-(benzyloxy)phenyl)(4-tert-butyl-5-morpholinooxazol-2-yl)methyl)malonate 3ue

103425

3.79

 $(C_{30}H_{36}N_2O_7)$ colorless oil; 64% yield, 92% *ee*. $[\alpha]_D^{20} = -49.7$ (*c* 0.66

2344

2

9.903

in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 9.38 min (major), 10.91 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.28 (m, 5H), 7.24 – 7.11 (m, 2H), 6.99 – 6.78 (m, 2H), 5.02 (s, 2H), 4.68 (d, *J* = 11.6 Hz, 1H), 4.32 (d, *J* = 11.6 Hz, 1H), 3.82 – 3.59 (m, 7H), 3.49 (s, 3H), 2.99 – 2.73 (m, 4H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.02, 167.64, 158.28, 157.59, 149.77, 136.87, 135.86, 129.53, 128.99, 128.59, 128.02, 127.53, 114.91, 69.98, 66.97, 56.67, 52.67, 52.53, 51.94, 44.46, 31.41, 29.62. ESI-HRMS: calcd for C₃₀H₃₆N₂NaO₇⁺ ([M+Na⁺]) 559.2415, found 559.2421.

	Retention Time	Area	% Area	Height
1	9.382	1292128	96.05	69373
2	10.913	53139	3.95	1503

dimethyl

2-((4-(tert-butyl)-5-morpholinooxazol-2-yl)(3,4-dichlorophenyl)methyl)malonate 3ve

 ($C_{23}H_{28}Cl_2N_2O_6$) colorless oil; 90% yield, 92% *ee*. $[\alpha]_D^{20} = -42.1$ (*c* 0.86 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.03 min (major), 24.56 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 10.5, 5.2 Hz, 2H), 7.07 (dd, J = 8.3, 2.1

Hz, 1H), 4.62 (d, J = 11.7 Hz, 1H), 4.24 (d, J = 11.7 Hz, 1H), 3.71 – 3.58 (m, 7H), 3.49 (s, 3H), 2.87 – 2.75 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.50, 166.15, 155.38, 149.12, 135.91, 135.18, 131.65, 131.03, 129.59, 129.49, 126.85, 65.90, 55.11, 51.82, 51.75, 50.90, 43.16, 30.42, 28.55. ESI-HRMS: calcd for C₂₃H₂₈^{34.9689}Cl₂N₂NaO₆⁺ ([M+Na⁺]) 521.1217, found 521.1229, calcd for C₂₃H₂₈^{34.9689}Cl^{36.9659}ClN₂NaO₆⁺ ([M+Na⁺]) 523.1187, found 523.1215.

	Retention Time	Area	% Area	Height
1	5.109	3105170	51.98	232898
2	22.934	2868680	48.02	10306

	Retention Time	Area	% Area	Height
1	5.031	4088713	95.97	319822
2	24.558	171791	4.03	767

dimethyl	2-((4-tert-butyl-5-morpholinooxazol-2-yl)(naphthalen-2-yl)methyl) malonate and a standard s
3we	

MeO₂C MeO₂C V $(C_{27}H_{32}N_2O_6)$ colorless oil; 81% yield, 90% *ee*. $[\alpha]_D^{20} = -51.1$ (*c* 0.74 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.20 min (major), 22.16 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 13.2, 8.4 Hz, 4H), 7.51 – 7.36 (m, 3H), 4.91 (d, *J* = 11.8 Hz, 1H), 4.50 (d, *J* = 11.8 Hz, 1H), 3.77 – 3.62 (m, 7H), 3.42 (s, 3H), 2.86 (t, *J* = 4.6

Hz, 4H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.01, 167.54, 157.38, 149.91, 135.98, 134.12, 133.30, 132.79, 128.40, 128.00, 127.73, 127.64, 126.22, 126.15, 125.91, 66.94, 56.38, 52.76, 52.57, 51.93, 45.31, 31.44, 29.63. ESI-HRMS: calcd for C₂₇H₃₂N₂NaO₆⁺ ([M+Na⁺]) 503.2153, found 503.2159.

	Retention Time	Area	% Area	Height
1	6.353	4396656	50.12	311744
2	20.158	4375672	49.88	21136

	Retention Time	Area	% Area	Height
1	6.204	14637108	95.07	981153
2	22.157	758692	4.93	3912

dimethyl 2-((4-(tert-butyl)-5-morpholinooxazol-2-yl)(thiophen-2-yl)methyl)malonate 3xe

 $(C_{21}H_{28}N_2O_6S)$ white solid; 28% yield, 85% *ee*. $[\alpha]_D^{20} = -46.3$ (*c* 0.24 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 9.27 min (major), 11.40 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.08 (m, 1H), 6.91 – 6.79 (m,

2H), 5.00 (d, J = 11.5 Hz, 1H), 4.27 (d, J = 11.5 Hz, 1H), 3.70 – 3.63 (m, 4H), 3.61 (s, 3H), 3.54 (s, 3H), 2.89 – 2.80 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.43, 166.29, 155.59, 148.92, 138.09, 135.10, 125.73, 125.61, 124.53, 65.92, 56.21, 51.73, 50.93, 39.43, 30.41, 28.57. ESI-HRMS: calcd for C₂₁H₂₈N₂NaO₆S⁺ ([M+Na⁺]) 459.1560, found 459.1567.

	Retention Time	Area	% Area	Height
1	9.266	2961315	92.51	154244
2	11.404	239916	7.49	7026

dimethyl 2-((4-tert-butyl-5-morpholinooxazol-2-yl)(furan-3-yl)methyl)malonate 3ye

 $(C_{21}H_{28}N_2O_7)$ yellow oil; 76% yield, 89% *ee*. $[\alpha]_D^{20} = -32.6$ (*c* 0.82 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.10 min (minor), 6.97 min (major). ¹H NMR (400

MHz, CDCl₃) δ 7.33 (dd, J = 6.0, 4.4 Hz, 2H), 6.33 (d, J = 0.9 Hz, 1H), 4.73 (d, J = 11.2 Hz, 1H), 4.21 (d, J = 11.2 Hz, 1H), 3.79 – 3.71 (m, 4H), 3.66 (d, J = 12.9 Hz, 6H), 2.99 – 2.82 (m, 4H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.66, 167.62, 156.88, 149.76, 143.05, 140.55, 136.02, 121.07, 110.05, 66.96, 56.02, 52.72, 52.68, 51.95, 36.26, 31.40, 29.60. ESI-HRMS: calcd for C₂₁H₂₈N₂NaO₇⁺ ([M+Na⁺]) 443.1789, found 443.1792.

	Retention Time	Area	% Area	Height
1	6.101	59860	5.44	5771
2	6.974	1040520	94.56	88732

dimethyl 2-((4-(tert-butyl)-5-morpholinooxazol-2-yl)(cyclohexyl)methyl)malonate 3ze

 $(C_{23}H_{36}N_2O_6)$ colorless oil; 81% yield, 86% *ee*. $[\alpha]_D^{20} = -13.8$ (*c* 0.81 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.78 min (major), 8.30 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 4.09 (d, *J* = 11.3 Hz, 1H), 3.83 - 3.71 (m, 7H),

3.60 (s, 3H), 3.49 (dd, J = 11.3, 4.1 Hz, 1H), 3.01 – 2.89 (m, 4H), 1.95 – 1.44 (m, 7H), 1.24 (s, 9H), 1.17 – 0.91 (m, 3H), 0.80 – 0.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.64, 168.43, 157.68, 149.18, 135.54, 66.98, 52.73, 52.49, 52.01, 44.72, 39.65, 31.88, 31.31, 29.61, 28.26, 26.61, 26.32, 26.23. ESI-HRMS: calcd for C₂₃H₃₆N₂NaO₆⁺ ([M+Na⁺]) 459.2466, found 459.2466.

	Retention Time	Area	% Area	Height
1	5.979	2347979	49.78	144672
2	8.028	2368492	50.22	49684

	Retention Time	Area	% Area	Height
1	5.777	1038477	93.14	68203
2	8.297	76541	6.86	2231

dimethyl 2-(1-(4-(tert-butyl)-5-morpholinooxazol-2-yl)ethyl)malonate 4ae

MeO₂C MeO₂C ^{'Bu} (C₁₈H₂₈N₂O₆) colorless oil; 83% yield, 72% *ee*. $[\alpha]_D^{20} = -6.0$ (*c* 1.30 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.65 min (major), 7.67 min (minor).

¹H NMR (400 MHz, CDCl₃) δ 3.77 (d, *J* = 9.6 Hz, 1H), 3.73 – 3.65 (m, 7H), 3.61 (s, 3H), 3.59 – 3.50 (m, 1H), 2.93 – 2.82 (m, 4H), 1.27 (d, *J* = 7.0 Hz, 3H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.28, 168.25, 159.11, 149.42, 135.83, 66.99, 55.46, 52.58, 52.57, 52.53, 51.95, 34.09, 31.33, 29.61, 16.19. ESI-HRMS: calcd for C₁₈H₂₈N₂NaO₆⁺ ([M+Na⁺]) 391.1840, found 391.1841.

	Retention Time	Area	% Area	Height
1	6.653	1854717	86.26	127727
2	7.665	295467	13.74	17896

dimethyl 2-((4-benzyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3aa

 $(C_{26}H_{28}N_2O_6)$ yellow oil; 85% yield, 86% *ee*. $[\alpha]_D^{20} = -54.4$ (*c* 1.00 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IA, n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.20 min (minor), 6.78 min (major). ¹H NMR (400

MHz, CDCl₃) δ 7.24 – 7.15 (m, 7H), 7.14 – 7.04 (m, 3H), 4.67 (d, *J* = 11.9 Hz, 1H), 4.32 (d, *J* = 11.9 Hz, 1H), 3.71 (s, 2H), 3.59 (dd, *J* = 5.2, 4.2 Hz, 4H), 3.52 (s, 3H), 3.39 (s, 3H), 2.82 (dd, *J* = 5.2, 4.3 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.91, 167.48, 157.74, 152.20, 139.62, 136.37, 128.70, 128.40, 128.38, 128.29, 127.85, 126.06, 124.37, 66.83, 56.19, 52.73, 52.53, 50.99, 45.03, 31.58. ESI-HRMS: calcd for C₂₆H₂₈N₂NaO₆⁺ ([M+Na⁺]) 487.1840, found 487.1847.

	Retention Time	Area	% Area	Height
1	6.203	463594	6.75	45526
2	6.779	6404518	93.25	572680

dimethyl 2-((5-morpholino-4-phenyloxazol-2-yl)(phenyl)methyl)malonate 3ab

MeO₂C MeO₂C N Ph $(C_{25}H_{26}N_2O_6)$ white solid; 97% yield, 86% *ee*. $[\alpha]_D^{20} = -127.7$ (*c* 0.83 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 9.06 min (minor), 12.13 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.2, 1.0 Hz, 2H), 7.35 – 7.11 (m,

8H), 4.73 (d, J = 11.8 Hz, 1H), 4.41 (d, J = 11.8 Hz, 1H), 3.71 (t, J = 4.7 Hz, 4H), 3.65 (s, 3H), 3.40 (s, 3H), 3.02 – 2.89 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 168.00, 167.51, 157.62, 151.10, 136.27, 131.96, 128.72, 128.45, 128.39, 127.93, 126.88, 125.91, 123.94, 66.89, 56.28, 52.90, 52.89, 52.56, 50.34, 44.97. ESI-HRMS: calcd for C₂₅H₂₆N₂NaO₆⁺ ([M+Na⁺]) 473.1683, found 473.1688.

	Retention Time	Area	% Area	Height
1	9.148	7573212	50.08	347786

	Retention Time	Area	% Area	Height
1	9.061	1146884	6.68	52660
2	12.127	16023868	93.32	524207

dimethyl 2-((4-methyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3ac

 $(C_{20}H_{24}N_2O_6)$ colorless oil; 60% yield, 86% *ee*. $[\alpha]_D^{20} = -73.9$ (*c* 0.56 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 9.51 min (minor), 14.12 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.21 (m, 5H), 4.72 (d, *J* = 11.9

Hz, 1H), 4.40 (d, J = 11.9 Hz, 1H), 3.79 – 3.64 (m, 7H), 3.46 (s, 3H), 3.00 – 2.89 (m, 4H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.94, 167.50, 157.13, 151.43, 136.46, 128.67, 128.34, 127.81, 121.23, 66.89, 55.95, 52.84, 52.52, 50.86, 44.93, 11.17. ESI-HRMS: calcd for C₂₀H₂₄N₂NaO₆⁺ ([M+Na⁺]) 411.1527, found 411.1529.

	Retention Time	Area	% Area	Height
1	9.505	321493	6.84	19168
2	14.118	4375924	93.16	170055

dimethyl 2-((4-isopropyl-5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3ad

 $(C_{22}H_{28}N_2O_6)$ yellow oil; 99% yield, 89% *ee*. $[\alpha]_D^{20} = -65.8$ (*c* 0.88 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm,

retention time: 7.18 min (major), 10.88 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 5H), 4.73 (d, *J* = 11.8 Hz, 1H), 4.38 (d, *J* = 11.8 Hz, 1H), 3.78 – 3.65 (m, 7H), 3.47 (s, 3H), 2.96 – 2.88 (m, 4H), 2.82 (dt, *J* = 13.8, 6.9 Hz, 1H), 1.17 (dd, *J* = 9.3, 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.94, 167.51, 157.50, 150.11, 136.64, 132.18, 128.62, 128.39, 127.73, 66.94, 56.37, 52.71, 52.49, 51.53, 45.19, 25.32, 22.00, 21.75. ESI-HRMS: calcd for C₂₂H₂₈N₂NaO₆⁺ ([M+Na⁺]) 439.1840, found 439.1840.

	Retention Time	Area	% Area	Height
1	7.181	4007767	94.52	270763
2	10.884	232570	5.48	5487

dimethyl 2-((4-benzyl-5-(piperidin-1-yl)oxazol-2-yl)(phenyl)methyl)malonate 3af

 $(C_{27}H_{30}N_2O_5)$ yellow oil; 86% yield, 86% *ee*. $[\alpha]_D^{20} = -77.9$ (*c* 0.89 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 9.89 min (major), 10.93 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.12 (m, 10H), 4.73 (d, *J* = 12.0 Hz, 1H), 4.39 (d, *J* = 12.0 Hz, 1H), 3.77 (d, *J* = 1.5 Hz, 2H), 3.57 (s, 3H), 3.45 (s, 3H), 2.95 –

2.79 (m, 4H), 1.64 – 1.33 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.90, 167.58, 157.07, 153.70, 140.01, 136.61, 128.64, 128.43, 128.40, 128.20, 127.73, 125.88, 123.10, 56.27, 52.68, 52.49, 52.06, 45.09, 31.61, 25.86, 23.84. ESI-HRMS: calcd for C₂₇H₃₀N₂NaO₅⁺ ([M+Na⁺]) 485.2047, found 485.2050.

	Retention Time	Area	% Area	Height
1	9.893	1168417	48.97	59174

	Retention Time	Area	% Area	Height
1	9.892	6873579	93.13	316215
2	10.927	507218	6.87	19211

dimethyl 2-((4-(tert-butyl)-5-(piperidin-1-yl)oxazol-2-yl)(phenyl)methyl)malonate 3ag

MeO₂C

MeO₂C

^tBu

 $(C_{24}H_{32}N_2O_5)$ colorless oil; 91% yield, 91% *ee*. $[\alpha]_D^{20} = -58.4$ (*c* 0.75 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 4.91 min (major), 6.13 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 5H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.28

(d, J = 11.8 Hz, 1H), 3.61 (s, 3H), 3.40 (s, 3H), 2.73 (t, J = 5.3 Hz, 4H), 1.56 – 1.36 (m, 6H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.96, 166.64, 155.75, 150.45, 135.94, 133.79, 127.52, 127.42, 126.58, 55.64, 51.87, 51.65, 51.43, 44.28, 30.30, 28.56, 24.90, 22.84. ESI-HRMS: calcd for C₂₄H₃₂N₂NaO₅⁺ ([M+Na⁺]) 451.2203, found 451.2204.

	Retention Time	Area	% Area	Height
1	4.963	4609347	48.56	371402
2	5.864	4883484	51.44	204594

	Retention Time	Area	% Area	Height
1	4.905	1701597	95.64	121817
2	6.125	77639	4.36	3878

dimethyl 2-((4-(tert-butyl)-5-(pyrrolidin-1-yl)oxazol-2-yl)(phenyl)methyl)malonate 3ah

($C_{23}H_{30}N_2O_5$) yellow oil; 80% yield, 91% *ee*. $[\alpha]_D^{20} = -70.2$ (*c* 0.75 in CH₂Cl₂). HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 5.08
min (major), 7.56 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.13 (m, 5H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.30 (d, *J* = 11.8 Hz, 1H), 3.62 (s, 3H), 3.40 (s, 3H), 3.00 – 2.83 (m, 4H), 1.82 – 1.71 (m, 4H), 1.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.04, 167.67, 156.71, 148.51, 136.99, 136.46, 128.54, 128.45, 127.60, 56.61, 52.67, 52.44, 45.31, 31.31, 29.51, 25.37. ESI-HRMS: calcd for C₂₃H₃₀N₂NaO₅⁺ ([M+Na⁺]) 437.2047, found 437.2048.

	Retention Time	Area	% Area	Height
1	5.082	5160759	95.47	380707
2	7.558	245092	4.53	7987

dimethyl 2-((5-morpholinooxazol-2-yl)(phenyl)methyl)malonate 3ai

(C₁₉H₂₂N₂O₆) colorless oil; 62% yield, 87% *ee*. $[\alpha]_D^{20} = -46.3$ (*c* 0.46 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 11.77 min (major), 15.03 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 5H),

5.95 (s, 1H), 4.75 (d, J = 11.9 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.80 – 3.68 (m, 7H), 3.46 (s, 3H), 3.08 – 2.91 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.95, 167.46, 157.33, 155.76, 136.40, 128.72, 128.32, 127.88, 102.86, 65.93, 56.06, 52.95, 52.55, 48.22, 44.61. ESI-HRMS: calcd for C₁₉H₂₂N₂NaO₆⁺ ([M+Na⁺]) 397.1370, found 397.1375.

	Retention Time	Area	% Area	Height
1	11.572	12484962	50.46	600637
2	14.333	12257930	49.54	370393

	Retention Time	Area	% Area	Height
1	11.766	5316102	93.44	251654
2	15.026	373190	6.56	9809

2-((4-(tert-butyl)-5-morpholinooxazol-2-yl)(phenyl)methyl)propane-1,3-diol 5

 $(C_{21}H_{30}N_2O_4)$ yellow oil; 90% yield, 95% *ee*. HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 6.25 min (major), 7.45 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 2H), 7.21 – 7.15 (m, 3H), 4.87 (s, 1H), 4.32 (d, *J* = 7.6

Hz, 1H), 3.85 (d, J = 12.1 Hz, 1H), 3.71 – 3.41 (m, 8H), 2.87 – 2.74 (m, 4H), 2.33 – 2.22 (m, 1H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 159.67, 150.02, 138.31, 135.29, 128.68, 128.46, 127.22, 66.91, 62.23, 61.48, 56.59, 51.89, 46.86, 45.08, 31.33, 29.66. ESI-HRMS: calcd for C₂₁H₃₀N₂NaO₄⁺ ([M+Na⁺]) 397.2098, found 397.2096.

	Retention Time	Area	% Area	Height
1	6.247	27600153	97.43	1806916
2	7.446	727763	2.57	30209

dimethyl

2-(2-((3,3-dimethyl-1-morpholino-1-oxobutan-2-yl)amino)-2-oxo-1-phenylethyl)malonate 6

 $(C_{23}H_{32}N_2O_7)$ white solid; 99% yield, 1.8:1 d.r., 99% *ee*. (major), 97% *ee*. (minor); HPLC DAICEL CHIRALCEL IB,

n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 210 nm, retention time: t₁ = 6.89 min, t₂ = 8.17 min, t₃ = 10.19, t₄ = 11.82. ¹H NMR (400 MHz, THF) δ 7.62 (d, *J* = 9.7 Hz, 1H), 7.18 – 6.98 (m, 5H), 4.19 (dt, *J* = 25.2, 10.3 Hz, 3H), 3.54 (s, 3H), 3.50 – 3.41 (m, 4H), 3.22 (s, 5H), 3.14 – 2.98 (m, 2H), 0.89 (s, 9H). ¹³C NMR (100 MHz, THF) δ 170.40, 168.94, 167.96, 167.59, 136.92, 128.31, 128.02, 127.28, 55.04, 53.89, 51.70, 51.25, 46.40, 41.85, 35.40, 26.04. ESI-HRMS: calcd for C₂₃H₃₂N₂NaO₇⁺ ([M+Na⁺]) 471.2102, found 471.2105.

	Retention Time	Area	% Area	Height
1	6.890	43420	0.16	5132
2	8.170	16433517	62.13	789711
3	10.186	132198	0.50	5423
4	11.818	9840801	37.21	301073

dimethyl 2-(2-oxo-1-phenyl-2-pivalamidoethyl)malonate 7

MeO₂C CO₂Me H ^H O O (C₁₈H₂₃NO₆) colorless oil; 51% yield, 98% *ee*. HPLC DAICEL CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 7.48 min (minor), 12.27 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.39 – 7.21 (m,

5H), 5.41 (d, J = 11.7 Hz, 1H), 4.32 (d, J = 11.7 Hz, 1H), 3.74 (s, 3H), 3.45 (s, 3H), 1.15 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.29, 174.04, 168.47, 167.57, 133.86, 129.16, 128.65, 128.17, 55.59, 52.91, 52.46, 50.63, 40.18, 26.77. ESI-HRMS: calcd for C₁₈H₂₃KNO₆⁺ ([M+K⁺]) 388.1157, found 388.1163.

	Retention Time	Area	% Area	Height
1	7.624	6345924	51.11	485427
2	12.766	6069786	48.89	230987

	Retention Time	Area	% Area	Height
1	7.481	154136	0.99	13318
2	12.271	15387661	99.01	612158

methyl (R)-4-oxo-3-phenyl-4-pivalamidobutanoate 8

(C₁₆H₂₁NO₄) yellow solid; 47% yield, 0% *ee*. HPLC DAICEL CHIRALCEL IB, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 6.26 min (minor), 7.22 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.37 – 7.23 (m,

5H), 5.11 (dd, J = 10.4, 4.8 Hz, 1H), 3.66 (s, 3H), 3.29 (dd, J = 17.2, 10.4 Hz, 1H), 2.63 (dd, J = 17.2, 4.8 Hz, 1H), 1.13 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.29, 174.96, 172.20, 137.24, 128.83, 128.40, 127.67, 51.85, 47.43, 40.17, 38.09, 26.82. ESI-HRMS: calcd for C₁₆H₂₁NNaO₄⁺ ([M+Na⁺]) 314.1363, found 314.1373.

	Retention Time	Area	% Area	Height
1	6.258	20409465	49.02	1337155
2	7.219	21223222	50.98	1233388

methyl 3-(5-morpholino-4-phenyloxazol-2-yl)-3-phenylpropanoate 9

CO₂Me

Ρh

 $(C_{23}H_{24}N_2O_4)$ yellow solid; 99% yield, 95% ee. HPLC DAICEL

CHIRALCEL ID, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 11.68 min (minor), 13.25 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.29 (dd, *J* = 9.3, 3.9 Hz, 4H), 7.26 – 7.17 (m, 2H), 4.60 (dd, *J* = 8.4, 7.0 Hz, 1H), 3.84 – 3.70 (m, 4H), 3.62 (s, 3H), 3.39 (dd, *J* = 16.4, 8.6 Hz, 1H), 3.08 – 2.98 (m, 4H), 2.94 (dd, *J* = 16.4, 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.67, 157.74, 149.95, 138.33, 130.95, 127.73, 127.33, 126.67, 126.35, 125.79, 124.87, 122.79, 65.81, 50.76, 49.27, 40.50, 37.99. ESI-HRMS: calcd for C₂₃H₂₄N₂NaO₄⁺ ([M+Na⁺]) 415.1628, found 415.1630.

	Retention Time	Area	% Area	Height
1	11.670	5622924	49.96	229282
2	13.531	5633001	50.04	154889

	Retention Time	Area	% Area	Height
1	11.676	496466	2.74	22378
2	13.254	17639663	97.26	394756

methyl (R)-4-benzamido-4-oxo-3-phenylbutanoate 10

(C₁₈H₁₇NO₄) yellow oil; 70% yield, 94% *ee.* HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 14.15 min (major), 17.94 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 7.82 – 7.71 (m,

2H), 7.54 (t, J = 7.4 Hz, 1H), 7.41 (dd, J = 9.4, 7.6 Hz, 4H), 7.35 – 7.24 (m, 3H), 5.25 (dd, J = 10.6, 4.6 Hz, 1H), 3.64 (s, 3H), 3.34 (dd, J = 17.2, 10.7 Hz, 1H), 2.68 (dd, J = 17.2, 4.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.28, 172.39, 165.36, 137.04, 133.16, 132.72, 128.98, 128.79, 128.46, 127.88, 127.85, 51.97, 47.78, 38.25.

	Retention Time	Area	% Area	Height
1	14.280	20285487	50.74	589449

	Retention Time	Area	% Area	Height
1	14.153	30317546	97.15	862515
2	17.937	889831	2.85	20326

3-(5-morpholino-4-phenyloxazol-2-yl)-3-phenylpropan-1-ol 11

 $(C_{22}H_{24}N_2O_3)$ yellow oil; 47% yiled, 94% *ee*. HPLC DAICEL CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 6.62 min (minor), 7.85 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.5 Hz, 2H), 7.42 - 7.21 (m, 8H), 4.31 (dd, *J* = 8.3, 6.2 Hz,

1H), 3.91 - 3.76 (m, 4H), 3.75 - 3.60 (m, 2H), 3.50 (s, 1H), 3.12 - 2.96 (m, 4H), 2.54 - 2.37 (m, 1H), 2.26 (ddd, J = 13.5, 11.2, 6.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.26, 151.04, 140.14, 131.64, 128.76, 128.51, 127.87, 127.16, 127.03, 125.93, 123.41, 66.90, 60.19, 50.32, 43.31, 37.37. ESI-HRMS: calcd for $C_{22}H_{24}N_2NaO_3^+$ ([M+Na⁺]) 387.1679, found 387.1678.

	Retention Time	Peak Type	Area	% Area	Height
1	6.618	Unknown	485523	3.00	37321
2	7.854	Unknown	15683371	97.00	742908

4-(tert-butyl)-5-(piperidin-1-yl)oxazole 7

To a stirred solution of the isocyanoacetamide 2e in DCM was added Sc(OTf)₃ (10 mol%). Upon reaction completion, water was

added and the mixture was extracted with DCM. The combined organic layers were dried upon Na_2SO_4 , concentrated *in vacuo*. The crude material was then purified by Flash Chromatography (SiO₂, petroleum ether /AcOEt: 5/1) to give the desired oxazole **7** as a white powder.

 $(C_{12}H_{18}N_2O)$ ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 3.77 – 3.64 (m, 4H), 2.98 – 2.83 (m, 4H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 149.03, 145.49, 134.42, 65.97, 50.88, 30.30, 28.64. SI-HRMS: calcd for $C_{12}H_{18}N_2NaO_2^+$ ([M+Na⁺]) 233.1260, found 233.1273.

8. References

- a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett* 2005, 2445; b) Z.
 P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, *Angew. Chem. Int. Ed.* 2008, 47, 1308; c)
 X. Zhou, D. J. Shang, Q. Zhang, L. L. Lin, X. H. Liu, X. M. Feng, *Org. Lett.* 2009, *11*, 1401
 and references therein.
- 2. O.Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675.
- a) A. Fayol, C. Housseman, X. Sun, P. Janvier, H. Bienaymé, J. Zhu, *Synthesis* 2005, 161; b)
 C. Housseman, J. Zhu, *Synlett* 2006, 1777.

9. Copies of NMR spectra

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\begin{array}{c} 7.313\\ 7.7308\\ 7.7293\\ 7.7293\\ 7.7293\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.7259\\ 7.2963\\$

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\begin{array}{c} 1,7,633\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,7,109\\ 7,100\\ 7,$

$-9.189 \\ -9.189 \\ -9.189 \\ -7.301 \\ -7.301 \\ -7.333 \\ -7.333 \\ -7.333 \\ -7.333 \\ -7.333 \\ -7.3335 \\ -5.226 \\ -3.335 \\ -3.335 \\ -5.226 \\ -3.335 \\ -5.226 \\ -3.335 \\ -5.226 \\ -3.335 \\ -5.226 \\ -5.226 \\ -5.226 \\ -5.2$

Copy of CD spectra

