Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Table S1 The elemental analysis results of Ti-HSZ precursor (synthesized at rotating rate of 56 rpm for 3.5 days) and Ti-HSZ catalyst.

Sample	N	С	Н
	(wt%)	(wt%)	(wt%)
Ti-HSZ precursor	1.67	7.53	1.57
Ti-HSZ catalyst	0.16	0.89	0.30

Table S2 Reuse of traditional Ti-MWW zeolite catalyst in the epoxidation of ally chloride with hydrogen peroxide to epichlorohydrin under the present reaction and regeneration conditions.^a

Reused times	Conv.	Sele.	
	(mol%)	(%)	
Fresh	94.8	100	
1	85.3	99.9	
2	73.1	99.9	
3	58.2	99.9	
4	39.7	99.9	

^a Fresh catalyst is prepared by calcination at 773 K in air for 4 hours;

Reaction conditions: allyl chloride, 30 mmol; H_2O_2 , 30 mmol; catalyst, 200 mg; acetone, 5 ml, reaction temperature, 333 K; reaction time, 8 h;

Regeneration: the used catalyst (1 g) was washed by 60 ml of H_2O_2 solution (30 g 30% H_2O_2 in 30 g ethanol) at 343 K for 12 h. The solid catalyst was recovered by filtration and dried at 353 K for 6 h for next use.

Captions:

Figure S1 Three hydrothermal crystallization modes: (a) static, (b) stirring, and (c) rotating in this work.

Figure S2 Crystallization apparatus in this work.

Figure S3 Characterization of Ti-MWW sample synthesized by conventional stirring crystallization mode: (a) SEM image, and (b) XRD pattern.

Figure S4 XRD patterns of Ti-HSZ catalyst synthesized at different rotating rates for 3.5 days (a) and SEM images of Ti-HSZ catalyst synthesized at rotating rates of 28 rpm (b).

Figure S5 FTIR spectra of Ti-HSZ catalysts synthesized at different rotating rates.

Figure S6 UV-vis spectra of Ti-HSZ catalysts crystallized at different rotating rates.

Figure S7 Recycling tests over traditional Ti-MWW catalyst. (Reaction conditions: allyl chloride, 30 mmol; H₂O₂, 30 mmol; catalyst, 200 mg; acetone, 5 ml; reaction temperature, 333 K; reaction time, 8 h.)

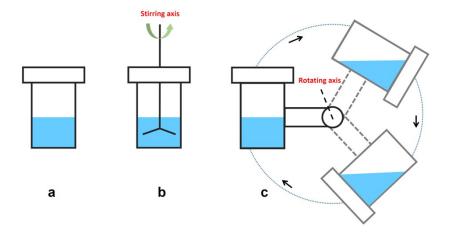


Figure S1

Figure S2

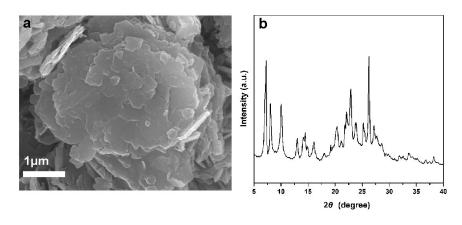
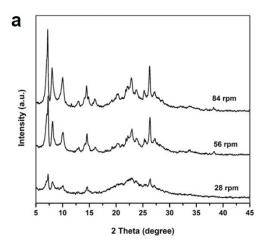



Figure S3

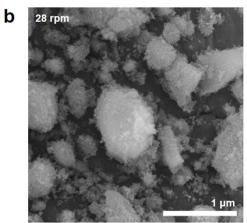


Figure S4

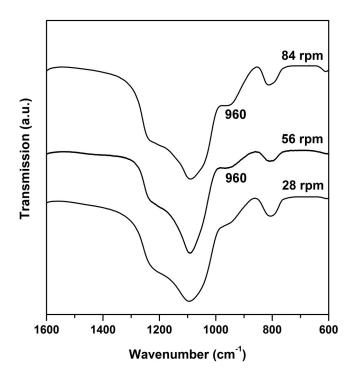


Figure S5

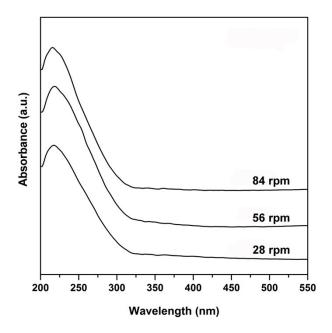


Figure S6

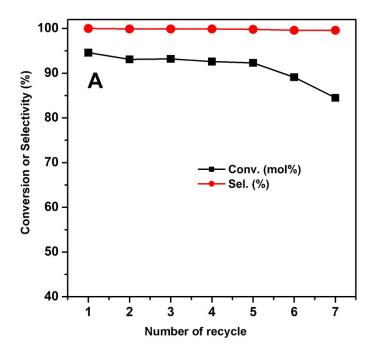


Figure S7