SUPPORTING INFORMATION

Aromatic Sulfonation with Sulfur Trioxide: Mechanism and Kinetic Model

Samuel L.C. Moors^{a*}, Xavier Deraet^a, Guy Van Assche^b, Paul Geerlings^a, Frank De Proft^a

^aEenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium

^bPhysical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium

*samuel.moors@vub.ac.be

Table of contents

COMPUTATIONAL DETAILS

Metadynamics of benzene-S ₂ O ₆ σ -complex in CH ₃ NO ₂	p. 2
Low temperature MD of the σ -complex intermediate in CH ₃ NO ₂	p. 2
Table S1. Mean geometric parameters at transition states and intermediate state	p. 3
Figure S1. PMFs from twelve 1D rMTD simulations of benzene-S ₂ O ₆ σ -complex	p. 4
Figure S2. Evolution of geometric parameters of the benzene- $S_2O_6 \sigma$ -complex intermediate state in CH ₃ NO ₂ from an AIMD simulation at 1 K	p. 5

COMPUTATIONAL DETAILS

Metadynamics of benzene-S₂O₆ σ-complex in CH₃NO₂

An estimate of the additional free energy barrier required for sulfonation of the benzene-SO3 σ complex with 1 assisting SO₃ in CH₃NO₂ is obtained with restrained MTD (rMTD), keeping the
C-S₁ restrained to $CN_{CS} = 0.5$ -0.6 with a harmonic potential. A single CV is defined as the
coordination number CN_{CO} , which tracks the distance between the benzene C1 and the three O
atoms of the assisting SO₃. Hill width = 0.02 and hill height = 0.2 kJ/mol. A set of twelve
independent rMTD simulations is started from the benzene-SO₃ σ -complex + 1 assisting SO₃ and
terminated as soon as the sulfonation reaction has taken place. From the set of 12 PMFs, an
average PMF is calculated (Figure S1).

Low temperature MD of the σ -complex intermediate in CH₃NO₂

To verify if a metastable σ -complex intermediate state may exist, geometry optimization is performed of a snapshot located at TS from a MTD simulation in CH₃NO₂ solvent, followed by low-temperature MD (T = 1 K). A geometry similar to the previously optimized intermediate state¹ is formed, which remains stable for at least 40 ps (Figure S2).

1. G. Koleva, B. Galabov, J. Kong, H. F. Schaefer and P. v. R. Schleyer, *Journal of the American Chemical Society*, 2011, 133, 19094-19101.

participants				N^{a}	$r_{\rm CS}$ (Å)	<i>r</i> _{CH} (Å)	$r_{\rm OH}({\rm \AA})$	$\alpha_{\rm CCH}$ (°)
2 SO ₃	2D MTD	gas phase	TS	3	1.877	1.167	1.517	129
		CCl ₃ F	TS	3	1.853	1.114	1.604	118
		CH_3NO_2	TS	3	1.830	1.112	1.629	114
	rMD	gas phase	TS	2	1.862	1.197	1.510	118
		CCl ₃ F	TS	2	1.848	1.197	1.562	113
	1D rMTD	CH_3NO_2	TS	11	1.859	1.131	1.584	112
	MD (1K)	CH_3NO_2	Ι	15 ps ^b	1.957	1.121	1.934	129
2 SO ₃ + 1 CH ₃ NO ₂	1D rMTD	CH_3NO_2	TS1	1	1.847	1.098	1.731 ^c	104
1 SO ₃ +1 H ₂ SO ₄	rMD	gas phase	TS1	1	1.893	1.131	1.656 ^d	136
		CCl ₃ F	TS1	1	1.863	1.127	1.708 ^d	106
		CH_3NO_2	TS2	1	1.869	1.095	1.621 ^d	115

Table S1. Mean geometric parameters at transition states and intermediate state.

^anumber of geometries of which mean parameters are calculated.

^bmean over over last 15 ps of a 40-ps simulation.

^cminimal H₁-O distance between benzene and CH₃NO₂.

^dminimal H₁-O distance between benzene and H₂SO₄.

Figure S1. PMFs from twelve 1D rMTD simulations of the benzene- $S_2O_6 \sigma$ -complex (dashed lines), and mean free energy profile (full line).

Figure S2. Evolution of geometric parameters of the benzene- $S_2O_6 \sigma$ -complex intermediate state in CH₃NO₂ from an AIMD simulation at 1 K. From top to bottom: C₁-S₁ distance, C₁-H₁ distance, minimal O₂-H₁ distance, C₄-C₁-H₁ angle.