Evaporation-induced self-assembly of quantum dots-based concentric rings on polymer-based nanocomposite films

Shaofu Zhang ^a, Weiling Luan ^{a*}, Qixin Zhong ^a, Shaofeng Yin ^a, Fuqian Yang ^{b*}

^a Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power

Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

E-mail: luan@ecust.edu.cn

^b Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40513, USA. E-mail: fyang2@uky.edu

Supporting Information.

Video S1. Formation process of the concentric rings on a PMMA-QDs film via the evaporation of a pure chloroform droplet (diameter of the steel ball: $500 \mu m$, film thickness: $120\pm10 nm$, concentration of QDs in chloroform: 10 mg/mL, concentration of PMMA in chloroform: 10 mg/mL).

Figure S1: Surface structures formed on the surface of a PMMA-QDs film (Film thickness: 220 nm, concentration of QDs: 30 mg/ml, and concentration of PMMA: 10 mg/ml)

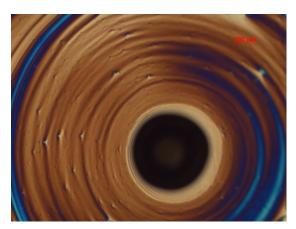


Figure S1. Surface structures formed on the surface of a PMMA-QDs film (Film thickness: 220 nm, concentration of QDs: 30 mg/ml, and concentration of PMMA: 10 mg/ml)